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Abstract

We present the sliding basis computational framework to automatically synthesize heterogeneous (graded or discrete) material fields
for parts designed using constrained optimization. Our framework uses the fact that any spatially varying material field over a given
domain may be parameterized as a weighted sum of the Laplacian eigenfunctions. We bound the parameterization of all material fields
using a small set of weights to truncate the Laplacian eigenfunction expansion, which enables efficient design space exploration with
the weights as a small set of design variables. We further improve computational efficiency by using the property that the Laplacian
eigenfunctions form a spectrum and may be ordered from lower to higher frequencies. Starting the optimization with a small set
of weighted lower frequency basis functions we iteratively include higher frequency bases by sliding a window over the space of
ordered basis functions as the optimization progresses. This approach allows greater localized control of the material distribution as
the sliding window moves through higher frequencies. The approach also reduces the number of optimization variables per iteration,
thus the design optimization process speeds up independent of the domain resolution without sacrificing analysis quality. While our
method is useful for problems where analytical gradients are available, it is most beneficial when the gradients may not be computed
easily (i.e., optimization problems coupled with external black-box analysis) thereby enabling optimization of otherwise intractable
design problems. The sliding basis framework is independent of any particular physics analysis, objective and constraints, providing
a versatile and powerful design optimization tool for various applications. We demonstrate our approach on graded solid rocket fuel
design and multi-material topology optimization applications and evaluate its performance.

Keywords: Design optimization, Reduced order parameterization, Graded material design, Multi-material topology optimization,
Solid rocket fuel design, Additive manufacturing

1. Introduction

Multi-material (heterogeneous) structures show great poten-
tial for superior product performance compared to homogeneous
material designs. The advantages of heterogeneous material
structures such as fiber reinforced, metal matrix, and ceramic
matrix composites are already clear with several applications
in aerospace engineering, construction, transportation, medical,
and defense industries. In some applications (such as spacecraft
engineering) where traditional composite materials may fail pre-
maturely via delamination and other mechanisms, functionally
graded materials characterized by gradual transitions in mate-
rial compositions and microstructure can improve performance
by improving mechanical properties and avoiding hard interfaces
between materials.

Realizing this potential, a variety of multi-material AM tech-
nologies have been developed for different material types includ-
ing polymers [1], metals [2] and ceramics [3]. These multi-
material AM technologies are becoming commercially available
and are being used in real world applications [4]. However, de-
sign tools that can take full advantage of such manufacturing ca-
pabilities are missing. Manually designing heterogeneous mate-
rial structures is a difficult and tedious task even for experienced
engineers and designers because multi-material AM technologies
can enable voxel-level control and therefore create a vast design
space. For example consider a heterogeneous material design
problem with m discrete materials in a discretized domain with
ne elements; the resulting design space has nm

e possible combi-
nations of materials that may be distributed. The combinatorics
are intractable very quickly even for low-resolution three dimen-
sional heterogeneous discrete materials with voxel level control.
When reasoning about weighted combinations of materials there

are infinitely many combinations per voxel. The advantages of
heterogeneous graded materials in aerospace and defense appli-
cations with complex interacting physics further implies the de-
sign space exploration must be efficiently coupled with domain-
specific solvers to synthesize novel heterogeneous material de-
signs.

In this paper, we present a novel method for optimizing het-
erogeneous material distributions given a prescribed set of de-
sign goals (Figure 1). In particular, we address inverse prob-
lems where the objective and constraints are coupled with a
‘black-box’ physical analysis whose implementation details are
unknown. Our approach may be contrasted with the promi-
nent automated synthesis technique of topology optimization [5].
Typically, topology optimization approaches rely on the idea that
gradients related to simulation variables can be computed ana-
lytically. While these analytical gradients and corresponding ad-
joint variables are well defined for a certain set of problems such
as simple linear elasticity problems, deriving analytical gradients
may be problematic or costly for applications involving complex
multi-physics especially when depending on external solvers for
the analysis. Often, such external analysis tools do not provide
the analytical gradient components that are essential in the tradi-
tional topology optimization processes.

When analytical gradients are not available, optimization ap-
proaches either use numerical gradients or employ stochastic
sampling methods such as genetic algorithms [6] or simulated
annealing [7]. These approaches do not scale well with increas-
ing number of optimization variables i.e., the size of the material
distribution field, because the introduction of new optimization
variables requires additional analysis calls. We address this chal-
lenge by using a reduced order approach that controls the mate-

Preprint submitted to Computer Aided Design May 11, 2020

Ulu, Nurcan <Nurcan.Ulu@parc.com>




rial distribution in a high-resolution analysis domain with a small
number of design parameters. The key underlying idea is that any
heterogeneous material field F viewed as a function over a com-
pact domain Ω can be parameterized as a weighted combination
of the eigenfunctions of the Laplace operator ∆ = ∇ · ∇ defined
over Ω (with Dirichlet boundary conditions). Every Laplacian
eigenfunction f satisfies the relation ∆ f = −λ f , and the set of
all such Ω-specific Laplacian eigenfunctions form a complete or-
thonormal basis {ei} for the function space L2(Ω). Therefore we
may write

F =
∑

i

wiei. (1)

In our approach, the design variables are the weights wi ap-
plied to the pre-computed ei for a given Ω. In a discrete repre-
sentation of Ω (e.g. as a mesh) there are finitely many ei deter-
mined by the number of mesh elements. Using the eigenfunc-
tion expansion and treating weights wi as design variables, we
see there are as many design variables as the size of the material
field (mesh elements), so this expansion simply amounts to a ba-
sis change. However, the power of the eigenfunction expansion
emerges when we truncate the basis to create a much smaller set
of optimization variables compared to the size of the field in the
discretized Ω. The ei have the spectral property [8], i.e. they
form a spectrum and can be ordered from low to high frequen-
cies, and the higher frequency eigenfunctions have support over
very small features. Truncating the number of basis elements re-
moves high frequency eigenfunctions from the material field pa-
rameterization, so the computational advantage of reducing the
design variables (weights) at the expense of local material field
variation must be traded off carefully. Our goal is to arrive at
a truncation that is sufficient to parameterize and represent the
material field that optimizes the given objective and constraints.

To avoid the trial and error in selecting a smaller set of basis
functions to efficiently explore the design space, we introduce
the sliding basis optimization. The key observation we make in
this work is that the spectral properties of the Laplacian eigen-
function basis allows us to capture material field variation over
increasingly local features by sliding (i.e. incrementally moving)
towards the higher frequency basis functions as the optimization
progresses. Our method can be used with both numerical gradi-
ents and stochastic optimization approaches incorporating com-
modity optimizers. The method provides a flexible and power-
ful mechanism for material distribution design that can be easily
applied to a variety of problems. We demonstrate two example
applications. First, we apply it to graded solid rocket fuel de-
sign such that the optimized fuel distribution results in the target
thrust profile when it burns. Second, we show its performance
on multi material topology optimization problem where the ob-
jective is to minimize the compliance of the resulting design. For
both applications, the analysis component is treated as black-box
to demonstrate the effectiveness of the approach.

The main contributions of the presented work are:

• an optimization technique we call sliding basis optimization
to explore parameterized design space efficiently and utilize
minimal set of basis to achieve design requirements,

• application of the spectral Laplacian basis to practical ma-
terial design problems with prescribed material bounds,

• enabling optimization of material distributions for new ap-
plications coupled with black-box analysis .

2. Related Work

2.1. Heterogeneous Material Design
Many topology optimization algorithms have been developed

to handle (discrete and graded) heterogeneous material distri-
butions. Among all of them, the most popular approach is
solid isotropic material with penalization (SIMP) method due to
its conceptual simplicity and practicality [5]. Recently, an or-
dered multi-material SIMP approach has been presented in [9]
that eliminates the dependence of computational cost to the
number of materials considered. SIMP approaches have also
been extended to structural optimization of laminate compos-
ites [10]. The level set approach to topology optimization has
also been used to design shapes with discrete heterogeneous ma-
terials [11, 12]. Recently, the SIMP and level set topology opti-
mization approaches have been extended to graded material de-
sign problems. Example applications include compliant mech-
anism design [13], auxetic material design [14], thermal appli-
cations [15] and cellular structure design [16]. In this paper,
we build on these heterogeneous material topology optimiza-
tion approaches. Our reduced order method can be easily ap-
plied to various problems involving different analysis, objec-
tives and constraints including but not limited to the ones men-
tioned above. Our approach is complementary to existing gradi-
ent based topology optimization methods. The parameterization
we use has a linear relationship between the weights of the basis
function (i.e., optimization variables) and the represented mate-
rial field. This differentiable relationship provides a convenient
way to incorporate our model reduction approach into existing
gradient based methods through a simple chain rule multiplica-
tion.

2.2. Reduced Order Design Optimization
The popularity of topology optimization as an effective ap-

proach to generative design has led to a growing interest in order
reduction techniques that provide a compelling way for reducing
the computational complexity in optimization problems [17, 18].
For example, an on-the-fly reduced order model construction
method has been presented in [19] for large scale structural topol-
ogy optimization. Yoon et al. [20] proposes a model reduc-
tion approach to reduce the size of the dynamic stiffness ma-
trix for topology optimization of frequency response problems.
While these approaches reduce the complexity of physics anal-
ysis, other works focus on reducing the number of design vari-
ables in the optimization while preserving the desired simula-
tion accuracy. Guest et al. [21] presents a dimension reduc-
tion method for structural topology optimization using Heaviside
projection. It defines control points that influence the mesh ele-
ments within a predefined radius providing local support over
the domain. Transforming design variables of topology opti-
mization into wavelet basis have been explored in [22]. Zhou et
al. [23] presents a reduced order topology optimization approach
using discrete cosine transform and demonstrate its efficiency on
2D problems. Similarly, a topology optimization method has
been developed using fourier representations in the form of dis-
crete cosine transforms for compliance minimization problems
in [24]. In this work, we present a similar approach in the sense
that we transform design variables into a different basis and re-
duce number of design variables. However, we use Laplacian
basis and exploit its spectral properties for efficient space explo-
ration through our sliding basis optimization approach.

Laplacian energy based deformation handles are used to ma-
nipulate designs using small number of variables for shape opti-
mization in [25]. A Laplacian based order reduction has been
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Figure 1: Overview of our approach. Given an input domain and target goals (e.g. thrust profile when designing a graded material solid rocket fuel), our algorithm
optimizes the material distribution in the domain to find a configuration that matches the target goals. In the preprocessing step, we compute the Laplacian basis
functions on the input domain. Then, our sliding basis optimizer adjusts the weights of a small number of active basis functions at a time. As the optimization
progresses, we slide the active set towards the higher frequencies until convergence is achieved.

presented in [26] for topology optimization of problems with
load uncertainties. Driven by similar motivations, our approach
reduces the dimensionality of the optimization variables rather
than the analysis solution. We use the Laplacian eigenfunction
basis to represent the material distribution with small number of
variables. Compared to previous work, our approach addresses
a more general class of problems involving graded and multi-
material design. In addition, our sliding basis optimization al-
lows us to explore a larger design space effectively by exploiting
the spectral properties of the Laplacian eigenfunction basis ele-
ments.

2.3. Laplacian Eigenfunction Basis

Generalizing the Laplacian to Riemannian manifolds using
the tools of discrete exterior calculus leads to the well known
Laplace-Beltrami operator. It is known that the eigenfunctions
of the Laplacian/ Laplace-Beltrami operator define a Fourier-like
basis to perform spectral analysis on manifolds [27]; for example
the eigenfunctions of the Laplacian on a sphere yield the spheri-
cal harmonics. Computing Laplacian eigenfunctions over a mesh
has several applications in geometry processing e.g. u-v param-
eterization [28], shape editing by designing filters in the man-
ifold ‘frequency domain’ [29], segmentation [30], computing
deformation fields for mesh editing [31], and interactive design
for haptics and animation [32], among others. Depending on
the structure of the mesh and the specific problem, variants of
the discretized Laplacian [33] are used. For example the area
weighted or cotangent weighted Laplacian formulation is bene-
ficial in mesh processing applications when the domain is dis-
cretized by a non-uniform triangulation. The spectral mesh pro-
cessing course [34] provides a detailed review of the applications
enabled by this representation.

Among the varying definitions of the discretized Laplacian,
we note that considering the volumetric mesh as a graph leads
to the definition of the graph Laplacian [31]. Although different
geometric embeddings can lead to the same graph Laplacian, it
is worthwhile noting that the eigenfunctions of the graph Lapla-
cian also exhibit the spectral property. In Section 3.2 we formally
define the combinatorial Laplacian as an operator over Ω consid-
ered as an oriented simplicial complex and show that the combi-
natorial Laplacian can be computed efficiently as a graph Lapla-
cian on the dual graph of the simplicial complex. This definition
also preserves the interpretation of the combinatorial Laplacian
as a discretized version of ∇ · ∇.

3. Sliding Basis Optimization

In this paper, we compactly represent the material distribu-
tion as field parameterized by a weighted sum of the combinato-
rial Laplacian eigenfunctions computed over a volumetric mesh.
We also reduce the number of design variables by truncating the
eigenfunction expansion to bound the material field distributions
considered in the optimization. This enables a significant speed
up in the design optimization process. As opposed to previous
applications using the Laplacian eigenfunction expansion, we do
not use a fixed basis; instead we explore the basis space gradu-
ally from low frequency ones towards the higher frequencies. In
addition to the computational benefits for optimization, this or-
der reduction allows us to compute small number of eigenvectors
as needed in contrast to the full eigenvalue decomposition which
can be costly for large meshes [35]. In applying Laplacian ba-
sis to practical material design problems, the need for enforcing
material property bounds introduces large number of additional
constraints to the optimization problem. We utilize logistic func-
tion based filters to avoid these extra constraints in both graded
and discrete material design.

3.1. Overview
Given an input domain represented by a mesh Ω and a set of

input goals (optimization objective and constraints), we optimize
the (discretized) material fieldF defined on Ω such that the input
goals are satisfied. We parameterizeF as a weighted sum of well
defined basis functions such that F = Bw, where B ∈ Rne×k is
a basis matrix whose columns are the eigenvectors of the graph
Laplacian (see Section 3.2), and w ∈ Rk is the weight vector.
Here, k and ne correspond to number of selected basis functions
and number of elements in Ω. The approach of parameteriz-
ing fields over surfaces via weighted Laplacian eigenfunctions is
well known [27], and we observe that when solving inverse prob-
lems optimal fields may be defined by finding optimal weights w
for precomputed eigenfunction expansions.

Due to the spectral property of the Laplacian eigenfunction
basis, we start with the ‘low-frequency’ basis functions whose
support captures large portions of Ω, and iteratively slide on
the ordered basis axis towards the ‘higher-frequency’ basis func-
tions whose support includes finer features, as the optimization
progresses. This idea is inspired by the observations made in
[36, 27] where analogies to signal processing, such as using low-
pass filters in the frequency domain by projecting signals to the
Fourier basis, can be applied to the Laplacian eigenfunctions for
non-trivial geometric processing. In geometric processing appli-
cations, the geometry Ω is treated as the signal so that filters on
the eigenfunction supports are used to perform editing operations
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Figure 2: A graph considered as an arbitrarily oriented 1-complex and the cor-
responding boundary operator ∂1 is shown. Notice that ∂1∂

∗
1 is the traditional

definition of the graph Laplacian. Here ∗ represents matrix transpose.

such as smoothing the shape. For example, low-pass filters help
remove fine features such as surface noise, sharp creases etc but
preserve most of the shape’s larger features. In this paper we
consider the material field (defined over Ω) as the signal that is
supported by only as many eigenfunctions as required to satisfy
performance objectives and constraints. The sliding basis algo-
rithm provides the numerical framework to efficiently explore the
ordered basis space and construct a parameterization of the opti-
mal material field.

Figure 1 illustrates our pipeline for an example design prob-
lem where the goal is to synthesize a material field for a solid
rocket fuel, such that the burning fuel induces a prescribed thrust
profile (thrust as a function of time). Such a problem exhibits
the characteristics of where our approach is most applicable; the
underlying domain Ω is largely fixed and the goal is to synthe-
size a material field over Ω, and the analysis for the thrust may be
provided by a custom numerical procedure. We will describe this
problem and its solution in greater detail in Section 4. In general,
for each design scenario, we assume that the design goals can be
described through an objective, f and a set of constraints, gi in
the form of a general optimization problem:

min
w

f (w)

s.t. gi(w) ≤ 0
(2)

where the optimization is coupled with a physical analysis. Note
that our model reduction method is differentiable. Therefore, if
the analytical gradients are already derived for the full material
field, ∂ f

∂F
, gradients for the reduced order problem can be com-

puted through a simple chain rule multiplication

∂ f
∂w

=
∂ f
∂F

∂F

∂w
(3)

where ∂F
∂w is the constant reduced order basis matrix, B.

3.2. Laplacian Eigenfunction Basis

The ith combinatorial Laplacian operator over a finite oriented
simplicial complex is defined as follows [37, 38, 39]

∆i = ∂i+1∂
∗
i+1 + ∂∗i ∂i (4)

Here ∂i represents the boundary operator for the ith dimen-
sional simplices, and ∂∗i is the adjoint operator of the boundary
(aka the ith co-boundary). The algebraic topological definition of

Figure 3: Spectral properties of Laplacian basis on an arbitrarily selected set.
Notice the level of detail in the spatial field increases with the higher frequency
basis functions.

the boundary operator on an oriented simplicial complex can be
written as a matrix.

∂i =


ι1,1 ι1,2 · · · ι1,n
ι2,1 ι2,2 · · · ι2,n
...

...
. . .

...
ιm,1 ιm,2 · · · ιm,n

 (5)

Here the oriented simplicial complex Ω has m i − 1 dimensional
faces and n i dimensional faces; ιp,q is 1 if the pth i−1 dimensional
simplex is a positively oriented face of the qth i dimensional sim-
plex, and −1 if the i − 1th dimensional simplex is negatively ori-
ented. Considering finite simple graphs as (arbitrarily) oriented
simplicial complexes of dimension 1, we notice that ∆0 is the
graph Laplacian (since ∂0 = 0). A simple example is shown in
Figure 2. Note that when we have an oriented simplicial com-
plex, the boundary is a linear operator written as a matrix multi-
plication. But the adjoint operator avoids the need to compute the
boundary this way due to the duality with the graph Laplacian.

Considering a tetrahedral mesh Ω as an oriented simplicial
complex of dimension 3 and computing ∆3 we obtain the defi-
nition ∆3 = ∂∗3∂3. Suppose we construct the dual complex Ω̄,
where the i-simplices of the primal complex Ω are mapped to
3 − i simplices in Ω̄. Then we observe the operator ∂∗3∂3 over Ω

is identical to ∂1∂
∗
1 over Ω̄. Thus ∆3 over Ω is the graph Lapla-

cian over Ω̄. Therefore we define the combinatorial Laplacian
∆3 = L = D − A, where D is a diagonal matrix with each entry
representing the element degree and A is the adjacency matrix
given by

A(i, j) =

1 if elements i and j share a face,
0 otherwise

(6)

We also note that ∂1∂
∗
1 is the (combinatorial) divergence of the

gradient on the dual complex. The Laplacian eigenfunction bases
are then derived by solving for the eigenvectors of L

λiei = Lei,∀i (7)

where λi and ei are the eigenvalues and eigenvectors of L, re-
spectively. The basis matrix B can then be assembled by con-
catenating the eigenvectors side by side, B = [e1, e2, ..., ek] ∈
Rne×k, where ne represents the number of 3-simplices (tetra-
hedral elements). Using weights of the basis functions w =
[w1,w2, ...,wk]T as design variables, we represent the material
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Figure 4: Sliding basis optimization starts by optimizing for the first nopt bases.
Then, the selected basis are shifted by ns and the optimization is performed for
the new set of nopt bases. This slide and optimize procedure continues until
convergence.

field as F = Bw. Although it is possible to compute all the avail-
able basis functions i.e., k = ne, we avoid this costly operation
in our sliding basis optimization by starting with a small num-
ber of functions k � ne and introduce additional eigenfunctions
as needed by simply concatenating new basis vectors to the right
side of the matrix B. To compute a small subset of eigenvectors in
Eq. (7), we utilize the Spectra library [40] in our implementation.

Algorithm 1: Sliding basis optimization
Input: nopt, ns, smax

Output: Optimized basis weights, w
isb ← 0 . Index for the first active basis set
its ← 0 . Sliding iteration
f ← 1/ε . A large number
w← ∅ . Optimized basis weights
while not converged or its < smax do

ws ← Initialize() . Weights for active basis functions
(ws, fs)← Optimize(isb, nopt)
if f − fs ≥ ε then

w← [w[0 : isb], ws]
f ← fs

its ← 0
else

w← [w, 0]
its ← its + 1

end
isb ← isb + ns

end

3.3. Optimization
We exploit the spectral property of the Laplacian basis (Fig-

ure 3) to explore the design space and iteratively optimize the
material field. Figure 4 illustrates the basic idea of our sliding
basis optimization. Here, nopt and ns are the number of active
basis functions (i.e., optimization variables) and the amount of
sliding at each sliding basis optimization step, respectively. We
explore the basis space through multiple optimization operations
where only the weights corresponding to the active nopt bases are
optimized at a time. We optimize for only a small number of
bases and we slide on the ordered basis axis by ns bases and per-
form another optimization with a new set of nopt variables. The
sliding iterations continue until convergence.

Algorithm 1 describes the approach in detail. Given nopt, ns
and smax (the number of maximum trials before stopping if there
is no significant improvement in objective value), the algorithm
returns a set w of optimized basis weights. We choose ns < nopt
so that there is an overlapping set of active basis function whose
weights are re-optimized (Figure 4) over the previous step. At
each sliding basis optimization step, the weights ws correspond-
ing to the active basis functions (initially the first nopt eigenvec-
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Figure 5: We utilize a gentle slope logistic function to bound the material distri-
butions (a) and ordered SIMP approach to achieve discrete multi-material distri-
bution (b).

tors of L), are optimized to achieve the lowest possible objective
value, fs. Note that the optimization step here can be imple-
mented using a commodity optimizer including a gradient based
or a stochastic one. In our examples, we use sequential quadratic
programming (SQP) [41] as it is an effective nonlinear program-
ming method for general optimization problems. At each opti-
mization step, we want to avoid getting stuck at the local mini-
mum found in the previous step. This can happen, for example,
if we initialize the weights for each new added basis to 0 and use
the previously optimized values for the weights of the overlap-
ping basis functions. In contrast, initializing all the weights of
an active basis set to be 0 or random-valued perturbs the initial
condition away from the previous local minumum. If the result-
ing optimized weights yield an objective value fs that is lower
than f , the weights are accepted and w is expanded to include
ws. If the objective value is not improved in the current iteration,
the weights of the overlapping region are not modified and w is
concatenated with 0 weights corresponding to the newly added
ns basis functions. Subsequently, the active set is modified by
sliding towards the higher frequency basis functions. The sliding
basis optimizations stops if the addition of the new basis does
not significantly improve the objective or the maximum number
of iterations are reached.

Suppose k Laplacian basis functions are selected and a gra-
dient based optimization approach such as SQP is utilized to
solve a material design problem. The costliest step in such an ap-
proach is often the Hessian computation where the computational
cost increases quadratically with the increasing number of design
variables (i.e., number of basis functions in our case), O(k2). In
cases involving black-box analysis of the objective (e.g. when the
implementation for the physical simulation to evaluate the objec-
tive is unavailable), the conventional approach of optimizing all
k design variables at once results in k2 analysis runs at each op-
timization step to construct the Hessian matrix. Given that anal-
ysis/ physical simulation is often expensive, the quadratic rela-
tionship makes the use of large k impractical by creating compu-
tational bottlenecks. In the sliding basis optimization approach,
the total computational cost is kept lower by exploring the same
k basis functions gradually, i.e. nopt functions at a time. In this
case, only n2

opt analysis runs are required to construct the Hessian
matrix. Here, it is important to note that nopt << k. As the opti-
mizer needs to be reinitialized after each sliding iteration in our
approach, p = (k−nopt)/ns + 1 complete optimization operations
are performed to cover k basis functions. Assuming same num-
ber of iterations are performed in each optimization operation
and ns → nopt, this translates to reducing the total computational
cost by a factor of up to nopt/k over optimizing for fixed k basis.

For graded material design problems, bounds of the allow-
able material properties need to be enforced so that the optimized
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field can be manufactured. To enforce the bounds, one approach
is to add additional linear inequality constraints in the form of
Bw ≤ umb and Bw ≥ lmb to the general optimization problem
given in Eq. (2). However, this approach increases the number
of constraint by 2*ne which could be in the order of hundred
thousands for dense material distributions. This increase in the
number of constraints slows down the optimization process sig-
nificantly, especially for cases where the analytical gradients are
not available. Instead, we use a filtering approach to bound the
material distribution of the field without introducing additional
constraints. We use a logistic function

l(x) = lmb +
umb − lmb

1 + exp(−κ(x))
(8)

where κ is the steepness parameter set to give a gentle slope as
shown in Figure 5.a. After the material field is computed as a
weighted combination of the basis functions, we utilize the lo-
gistic function to enforce the bounds of the manufacturing tech-
nique. This approach provides a differentiable way to limit the
material properties for manufacturability. Similarly, we enforce
material constraints for multi-material optimization of discrete
sets by combining this filtering approach with the penalization
methods (Figure 5.b). We will now discuss these properties in
the context of non-trivial design applications.

4. Applications

4.1. Graded Solid Rocket Fuel Design

In this application, our goal is to
develop a computational tool to de-
sign a multi-material solid rocket pro-
pellant. Solid rocket propellant is
shown at right with the inner surface
geometry (where ignition takes place)
in red and outer casing in blue.The
propellant design should satisfy two
main requirements: (1) The thrust
generated as the propellant burns
needs to match a given target thrust profile (2) No insulation
should be required at the outer casing. The former requirement
ensures that the rocket behaves as desired during its use. The
latter requirement indicates that at the moment prior to burn out,
all the casing surface is covered with some propellant material
that will vanish at the same time, ensuring no part of the cas-
ing surface is exposed to on-going burning. Elimination of the
insulation is an important innovation to substantially reduce the
rocket weight. The time-varying nature of this problem brings
up extra computational complexity in the analysis. Our model
reduction and efficient sliding basis exploration plays a critical
role for the solution of such a problem.

Physical Analysis. We first examine the physical relationships
between a provided thrust profile (required thrust vs time) and
the burn rate distribution of the rocket propellant and develop a
boundary value problem to simulate the solid propellant burn. At
any time t, the relationship between the thrust profile, th(t) and
the pressure inside the combustion chamber, Pc(t) is given as

Pc (t) =
th (t)
C f At

, (9)

where C f and At are thrust coefficient and throat area, respec-
tively. The mass flow rate of the exhaust gas emanating from the
rocket nozzle is proportional to the pressure inside the chamber,

ṁout (t) =
AtPc (t)

cs
. (10)

Here cs represents the speed of sound. The mass flow rate ema-
nating from the burn front can be calculated as a surface integral

ṁin (t) =

‹
Γ(t)

ρpṙ (x, y, z) dσ, (11)

where ρp is the propellant density, ṙ (x, y, z) is the spatial propel-
lant burn rate distribution (as a function of the material at (x, y, z))
and Γ (t) is the burn surface. The burn rate is related to the cham-
ber pressure and the reference burn rate through the power law

ṙ (x, y, z) = ṙre f (x, y, z)
(

Pc

Pre f

)n

, (12)

where ṙre f (x, y, z) is the spatial distribution of the reference burn
rate, Pre f is the reference pressure and n is the kinetic constant.
Assuming a simplified mass conservation ṁin (t) = ṁout (t), the
thrust profile can be derived as a function of the reference burn
rate:

th (t) =

(
P−n

re f I1−n
sp A−n

t cn
s

‹
Γ(t)

ρpṙre f (x, y, z) dσ
) 1

1−n

(13)

To close the Eq. 13, we model the evolution of the burn surface
Γ (t) using the Eikonal equation

|∇φ| =
1

ṙre f (x, y, z)
. (14)

The level sets of φ define the surface of the burn front at time
instance t,

Γ(t) =
{
{x, y, z} ∈ R3|φ (x, y, z) = t

}
. (15)

We solve equations (13)-(15) assuming an axial symmetry in-
side a cylindrical rocket chamber with length, L inner radius, rin
and outer radius, rout. When solving the boundary value problem
we ensure the burn surface at the final time step is equal to the
outer rocket case, Γcase i.e., Γ (tend) = Γcase.

Optimization Problem. We minimize the `2 norm of the error
in matching the thrust profile while constraining the inner burn
surface to avoid placing any insulating material

min
w

∑
t

(th(w) − thtarget)2

s.t. rb(w)i > rin

(16)

where thtarget and th represent the target thrust profile and the cur-
rent thrust profile achieved with the distribution F = ṙre f (x, y, z)
computed using the weights w. Since the physical analysis solves
a boundary value problem and constructs the level set of the burn
surfaces starting from the outer case, we are able to optimize the
material distribution such that the initial burn surface comes as a
byproduct. For each material distribution, we represent the inner
burn surface through a set of radius values, ri

b, and check if they
are all inside the allowable inner surface region defined by the
radius value, rin.
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Figure 6: Top image shows the progression of the burn front (black lines) on the
cross section of solid rocket with the graded burn rate distribution for the constant
acceleration thrust profile. The arrows on the right denote the burn direction.
Notice the lines spread apart in high burn rate material regions (blue) compared
to the low burn rate regions(yellow) indicating faster burn. Bottom three cutouts
show the solid rocket fuel at three stages of the burn propagation.

4.2. Multi-Material Topology Optimization
We apply our sliding basis optimization approach to the design

of multi-material distributions with given discrete set of prede-
fined materials for structural mechanics problems.

Physical Analysis. Assuming linear isotropic materials and
small deformations, we solve the linear elasticity problem Ku =
F where K, u and F are the stiffness matrix, nodal displace-
ment vector, and nodal external force vector, respectively. In our
implementation, we discretize the domain using tetrahedral el-
ements characterized by linear shape functions assuming static
load and fixed displacement boundary conditions.

Optimization Problem. We formulate the multi-material design
optimization as a density based topology optimization problem
with compliance minimization and mass fraction constraint as

min
w

uT K(w)u

s.t. m(w)/m0 ≤ m f rac

K(w)u = F

(17)

where m, m0 and m f rac are mass of the current design, mass of
the design domain fully filled with maximum density and pre-
scribed mass fraction. Here, uT Ku represents the compliance of
the structure. We adopt the ordered multi-material SIMP inter-
polation approach [9] since it does not introduce additional vari-
ables and computational complexity as the number of materials
increase. We incorporate the interpolation step after computing
the density field with the weights and basis functions and using
the bounding filter to keep density values in [0, 1] limits as ex-
plained in Section 3.3. Additionally, we implemented the density
filtering approach described in [42]. This filter is often utilized to
avoid checkerboard issues in traditional topology optimization.
We observe similar issues as we use higher order basis functions
although we use a reduced order approach. We found the den-
sity filtering helpful in avoiding those issues in our reduced order
approach as well.

5. Results and Discussions

We demonstrate the results of using sliding basis optimization
in the applications described in Section 4. We discuss the pro-
gression of the optimization during sliding steps, performance
gain and effect of sliding amount.

Graded solid rocket fuel design. The sliding basis optimiza-
tion results for four different thrust profiles (constant accelera-
tion, constant deceleration, two step and bucket) are presented
in Fig. 7. Since our physical analysis assumes axially symmet-
ric material distributions, we parameterize the cross section and
compute the basis functions on it. We treat the analysis (solving
the boundary value problem described in Section 4) as a black-
box solver and do not derive the analytical gradients for this ap-
plication to show the effectiveness of our sliding basis optimiza-
tion approach. As shown in Fig. 6, we parameterize the burn rate
distribution on the whole rectangular cross section. For all of
our examples, we used 3000 quad elements on the cross section.
Due to the boundary value problem formulation which takes the
last burn front (outer cylindrical surface) as input, the inner burn
surface is computed as a byproduct of the simulation. After the
optimization is completed, we mask out the portions of the cross
section that are beyond the inner surface since these portions are
not needed to achieve the desired target thrust profile behavior.

One challenge in matching the thrust profiles is to be able to
reduce the thrust significantly through the end of the burn pro-
cess (e.g., constant deceleration profile). At a given time, the
thrust is proportional to the area of the burn front surface. Since
the surface area naturally increases as the burn surface propagates
from inside to the outside of the cylinder, reducing thrust requires
complex material distributions that can reverse this natural ten-
dency to increase burn surface area. Therefore, the constant de-
celeration profile is more challenging and requires more com-
plex material distributions than the constant acceleration profile.
Table 1 reports the parameters used in our examples and perfor-
mance of our sliding basis optimization through time, objective
value and the average percentage error between the target and op-
timized thrust profiles. While we use 20 optimization variables,
nopt for the constant acceleration, two step and bucket profiles,
we observe that using 50 optimization variables results in better
performance for constant deceleration profile. We believe this is
mainly due to the challenging nature of this profile that requires
more complex distributions that can be achieved using more ba-
sis functions.

Figure 8 shows the target and optimized thrust profile results
during six steps of sliding basis optimization for two step thrust
profile. The first optimization step that uses only twenty ba-
sis functions does not match the target profile well since the
small number of basis functions is not enough to create complex
enough material distributions for this case. In the consecutive
steps, however, the resulting thrust profiles progressively match
the target better as more basis functions are incorporated with
each slide. Finally, the sliding optimization stops when the con-
vergence criteria is satisfied. For this application, we used 5%
error in the profile match as the convergence criteria.

We compare the sliding basis optimization to the reduced or-
der approach using a predetermined number of Laplacian basis
functions during the optimization such that all basis functions are
optimized simultaneously. Note that this ‘fixed basis’ approach
is already a reduced order method and significantly improves
optimization performance by projecting optimization variables
into lower dimensional space. Table 1 reports the performance
of both fixed and sliding basis optimization methods. Our slid-
ing basis approach can speed up the optimization process up to
8 times over the fixed basis method while exploring the same
number of basis functions. In addition to the time gain, sliding
basis optimization results in better objective minimization per-
formance in most of our examples. We believe this may be due
to the random initialization at each sliding step that acts as local
perturbations and alleviate local minima issues of general non-
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Figure 7: Solid rocket fuel design results with volume render of the burn rate distribution (a), cross section of the rocket geometry with inner surface (b) and thrust
profile plot (c). The images and plots from top to bottom represent the results of constant acceleration, constant deceleration, two step and bucket profiles.
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Figure 8: Progression of thrust profile match through the sliding basis optimization. With only first few basis functions, the results may be far from the desired.
However, the optimizer recovers from those results with the additional sliding optimization steps since more basis functions are used.

8



Table 1: Performance of our sliding basis optimization algorithm for the graded solid rocket design problem on a variety of target thrust profiles. Performance of fixed
basis reduced order optimization is also provided for comparison. Note that fixed basis optimization and sliding basis optimization cover the same basis functions.

Fixed Basis Sliding Basis
Thrust Profile nopt ns nslides Total Basis Time Objective/Error Time Objective/Error
Constant Acceleration 20 15 14 230 1178s 349k/2.3% 288s 86k/1.1%
Constant Deceleration 50 40 7 320 4896s 867k/3.4% 621s 452k/2.7%
Two Step 20 15 7 125 191s 102k/1.1% 69s 217k/1.4%
Bucket 20 15 24 380 1006s 272k/1.8% 596s 272k/1.8%

Figure 9: Multi-material topology optimization results for the cantilever beam
problem throughout the sliding steps. (a) problem setup with boundary condi-
tions (blue regions) and external loads (yellow arrows). (b)-(d): optimized mate-
rial distributions for two materials and void.

linear optimization problems. All computations are performed
and recorded on a computer with 16GB memory and 3.1GHz i7
processor.

Multi-material topology optimization. Figure 9 presents the
problem setup (a) and the optimized material distributions for
three steps of the sliding basis optimization (b-d) for the can-
tilever beam. For this beam example, we use a discrete set of
void and two materials with normalized density values of 0, 0.1
and 1 and Young’s modulus values of 0, 2GPa and 3GPa. From
Figure 9(b) to Figure 9(d), number of optimized basis functions
increase from 20 to 170 indicating the complexity of material
distribution increases as the number of basis functions increases.
This sliding basis optimization is performed using nopt = 20
and ns = 15 with mass fraction constraint, m f rac of 0.5 on a
mesh with 19567 tetrahedral elements. Using numerical gra-
dients (i.e., treating simulation as black-box), we observe that
sliding basis optimization results in approximately 3 times faster
computation time (87mins vs 259mins) compared to fixed basis
optimization with 170 basis.

The optimized material distribution of the bracket model
is given in Figure 10 for a discrete set with three materi-
als (normalized densities: 0.1, 0.3, 1 and Young’s modulus:
1.5GPa, 2.5GPa, 3GPa). It can be observed that the optimizer
places the strongest material on the load paths an around the high
stress regions such as where the boundary conditions and forces
are applied. The optimization is performed using nopt = 20 and
ns = 15 with mass fraction constraint, m f rac of 0.5 on a mesh
with 174454 tetrahedral elements. For this particular example,
instead of using the numerical gradients, we derived and utilized
the analytical gradients. The analytical gradient computation is
an extremely fast operation for compliance minimization. Thus,

Figure 10: Multi-material topology optimization result for the bracket model.
Left: problem setup with boundary conditions (blue regions) and external
loads (yellow arrows). Right: optimized material distribution is given for three
material set.

the only costly operation during the optimization is the linear
solve while finding the Lagrange multipliers. However, the com-
putational cost of a linear solve operation with a matrix of size 20
or 200 are marginally different for state of the art linear solvers.
Therefore, we do not observe a computational gain for using the
sliding basis optimization over the fixed basis optimization for
this particular compliance minimization problem when analytical
gradients are utilized. However, note that fixed basis optimiza-
tion already reduces the computational cost of the linear solve
from a matrix of size 174454 to a matrix of 200. Furthermore,
sliding basis optimization could provide more significant compu-
tational gain over fixed basis for problems with costly analytical
gradient computations.

Figure 11 demonstrates convergence of our optimization with
respect to number of explored basis functions for different slid-
ing amount values, ns. We provide objective value in log scale,
the average percentage error in target profile matching and com-
putation time. In terms of selecting the sliding amount, we found
that lowering the sliding amount and re-optimizing for more ba-
sis functions might give better objective reduction capabilities for
lower number of explored basis functions. However, as the num-
ber of explored basis increases, all ns values converge to similar
objective values. Additionally, small sliding amounts take more
computational time to cover the same amount of basis functions
since more basis functions are re-optimized due to the overlap.
In summary, we found that using large sliding amounts (ns nopt)
with small overlap works well resulting in similar objective min-
imization performance compared to small sliding amounts with
minor increase in computational time. In our examples, we ob-
served that ns ≈ 0.75 ∗ nopt gives a good trade off between objec-
tive minimization and computational performance.

We compare our Laplacian basis formulation to classical
topology optimization like conventional approach where value
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Figure 11: Effect of sliding amount to convergence with objective value (shown
in log scale), target profile matching error and computation time.

of element is optimized independently in Figure 12. It can be ob-
served that the results of the Laplacian basis are smoother since
low number of basis functions are used and they correspond to
lower frequency basis functions. We can see that there is less
than 0.3% objective value difference between the conventional
approach and the sliding basis optimized result while the differ-
ence between the optimization time is significant. For this exam-
ple, we run the solid rocket fuel design problem for the two-step
thrust profile. Note that we have reduced grid resolution to 1800
to be able to run the conventional approach in practical times.
As we increase the resolution and thus number of optimization
variables, computational time gain increases.

Limitations. Since our formulation is a reduced order approach,
the solution space is limited by the basis functions used during
the optimization. Thus, there may be a better optimum that lies
outside this space that cannot be reached by using a small num-
ber of basis functions (k ∼ 100) compared to optimizing for all
elements of the mesh domain (ne ∼ 100k). However, our ex-
amples demonstrate that the small number of basis functions are
capable of satisfying the design requirements and enable solution
of otherwise intractable computationally demanding problems.

We apply our sliding basis optimization to general nonlinear
optimization problems. Unfortunately, finding the global opti-
mum of such problems is still an open problem and our approach
does not guarantee that the optimized solutions are globally op-
timum. Similar to traditional topology optimization approaches,
different initial conditions may give different locally optimum
results. Depending on the problem, this may be an important
challenge. However, for compliance minimization, we do not
observe significantly different results for different initial condi-
tions in terms of the minimized compliance value. Moreover, our
re-initialization at each step of the sliding optimization and re-
optimization of overlapping basis functions help alleviate these
local minima issues.

Conventional Approach — Objective: 252316  Time: 1945sec

Fixed Basis — Objective: 287876   Time: 173sec

Sliding Basis —  Objective: 253040   Time: 42sec

Figure 12: Comparison of objective value and computation time for sliding basis
optimization, fixed basis optimization and conventional optimization approach.

6. Conclusion and Future Work

Given a design domain and a set of goals in the form of ob-
jective and constraints, we present a method to design multi-
material distributions. To solve the material distribution design
problem with a reduced order approach, we use Laplacian eigen-
functions as a basis and project the design space into lower di-
mensions with fixed number of basis functions. Further, we
extend this fixed basis optimization approach to a sliding basis
method where the key idea is to exploit the spectral properties
of the Laplacian basis for efficient exploration in the reduced
space. Our sliding basis approach provides a flexible and power-
ful mechanism enabling computationally demanding design op-
timization problems involving black-box analysis. In this work,
we show its efficiency on two applications as graded solid rocket
fuel design and multi-material topology optimization. When
tested with black-box analysis, our sliding basis approach can
speed up the optimization process up to 8 times over the fixed
basis method, often leading to better objective minimization due
to local perturbations at each sliding step. We believe the ability
to work with black-box analysis is very important for facilitating
innovation and promoting engineering collaboration.

In this work, we focus on design material distribution fields.
However, our approach generalizes to any spatial field design
such as displacement fields. In future, other basis functions ex-
hibiting similar spectral properties can be explored and incor-
porated into our sliding basis optimization method. Musialski
et al. [43] presents a reduced order method for surface design.
Complementing our approach with a such parametrization could
allow efficient design of surface geometries increasing surface
detail in a sliding manner similar to increasing the detail in ma-
terial distribution.
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