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ABSTRACT
The ability to track human operators’ hand usage when

working in production plants and factories is critically impor-
tant for developing realistic digital factory simulators as well
as manufacturing process control. We propose an instrumented
glove with only a few strain gauge sensors and a micro-controller
that continuously tracks and records the hand configuration dur-
ing actual use. At the heart of our approach is a trainable system
that can predict the fourteen joint angles in the hand using only
a small set of strain sensors. First, ten strain gauges are placed
at the various joints in the hand to optimize the sensor layout
using the English letters in the American Sign Language as a
benchmark for assessment. Next, the best sensor configurations
for three through ten strain gauges are computed using a support
vector machine classifier. Following the layout optimization, our
approach learns a mapping between the sensor readouts to the
actual joint angles optically captured using a Leap Motion sys-
tem. Three regression methods including linear, quadratic and
neural regression are then used to train the mapping between the
strain gauge data and the corresponding joint angles. The fi-
nal proposed model involves four strain gauges mapped to the
fourteen joint angles using a two-layer feed-forward neural net-
work.

1 Introduction
Recent advances in 3D data acquisition and tracking tech-

nologies have enabled a rapid digitalization of large production
plants and factories in various formats such as point clouds and
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triangle soups. Acquired data is utilized for the generation of
digital twin of manufacturing processes, which can be used to
simulate and optimize work-cell layouts while improving human
operator effectiveness, safety and ergonomics. Although existing
process simulation tools can make use of digitized factory envi-
ronments in the form of point clouds, these tools still require a la-
bor intensive manual configuring of the simulation environment
such as how human workers interact with the assembly tools and
how they manipulate different objects during manufacturing.

In this work, we address the problem of acquiring an accu-
rate 3D model of human hand usage using an instrumented glove
with only a few strain gauge sensors. Once available, this data
can be incorporated directly into factory environment simulators,
thereby alleviating the need for manual process parameter tuning.
Specifically, we envision that a set of instrumented gloves will be
utilized by human workers while they are performing their jobs
in a real factory environment and the proposed wearable device
will enable automatic data collection for understanding how hu-
man workers interact with their surroundings.

Towards this goal, we develop a wearable device that is able
to track and record human hand poses relative to the wrist over
an extended period of time. The main advance in this work is
the development of methods, algorithms, and a prototype device
that use as little as four strain gauges to predict in real-time all
the fourteen joint angles in the fingers with an average RMSE
error of 3.6◦. Given a target number of strain gauges, we be-
gin by identifying the best layout configuration of these sensors
on the outer surface of the human hand using the classification
performance on the English letters in American Sign Language
as a way to assess candidate layouts. Next, we establish a train-
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ing protocol for hand pose tracking wherein a new user wears
and trains the glove for a duration of 3 minutes. The purpose
of this training is to learn a mapping from the sensor readouts
to the fourteen joint angles, where the joint angles are captured
using a Leap Motion depth sensor as the ground truth. This ap-
proach enables high-fidelity benchmark poses to be gathered dur-
ing the training phase using optical tracking, while alleviating the
need for optical tracking during actual use (hence only requir-
ing strain sensing). The results of our experiments involving a
varying number of strain gauges as well as regression algorithms
involving linear least squares, quadratic least squares and neural
regression are also compared. Our studies suggest that an instru-
mented glove with four strain gauges that uses neural regression
to be the best compromise between tracking accuracy and device
simplicity.

Our main contributions are:

1. A method to identify the best strain sensor layout for human
hand pose estimation.

2. A training algorithm between optically captured hand poses
and a lower dimensional strain data for high fidelity hand
pose tracking.

3. A wearable glove with a limited number of strain sensors for
real-time hand pose tracking.

2 Related Work
Our work builds on hand gesture recognition and tracking

systems with a specific focus on factory environment use. In this
section, we review hardware systems and computational algo-
rithms of two main hand tacking approaches, (1) wearable sensor
systems, (2) vision based techniques. Additionally, we discuss
commerially available hand tracking systems in relation to our
specific problem.

Wearable devices typically integrate strain, acceleration, and
force sensors combined with classifiers for hand pose recogni-
tion [1–3]. Compared to these works, our aim is to track the full
hand pose rather than a set of discrete hand gestures. Kramer et
al. [1] present a hand gesture recognition system using an instru-
mented glove with approximately 20 sensors where each sensor
is comprised of two strain gauges. In our approach, we aim to
minimize the number of strain sensors for ease of usability and
fabrication. The musculoskeletal system of the hand allows the
prediction of hand movement (i.e., all 14 joints) using a much
fewer number of sensors due to a coupling between the joint an-
gles. In our approach, we exploit this coupling to achieve accu-
rate tracking using only a few sensors (3-5) with a performance
similar to 10 strain gauges. Note that this approach requires a
special attention due to the mapping from low dimensional sen-
sor data to a high dimensional joint angle space (Section 2.2.3).

Lei et al. [3] presents an accelerometer-based method to de-
tect 12 predefined index finger movements of stroke patients dur-

ing rehabilitation therapies. The study reports gesture recogni-
tion accuracy varying form 59% to 87% and continuous tacking
of one finger on the 12 classes. One drawback of accelerometer-
based approaches is that these sensors are rigid pieces. In con-
trast, strain gauges are inherently slimmer, lighter and flexible
allowing them to better conform to natural hand poses. Federico
et al. [2] demonstrate a glove design with conductive mixture
patterns as sensors. While the above study presents very high
accuracy at first wear, sensor-based approaches are sensitive to
hand sizes and repetitive wears. In our approach, we overcome
this issue with a short training session using a depth sensor in a
controlled environment.

Vision-based approaches have been widely used in gesture
recognition and motion tracking applications. These vision-
based approaches have been demonstrated using many differ-
ent hardware setups including optical or infrared cameras [4, 5],
RGB cameras and depth sensors [6, 7]. Gioliu et al. [8] present
an SVM based gesture recognition algorithm using infrared cam-
eras, RGB cameras and depth sensors, reporting up to 92% ac-
curacy. Real-time hand tracking has been studied in [21]. How-
ever, vision based techniques are non-wearable and non-portable
settings which are not feasible in an industrial environment. Vi-
sion based techniques are also sensitive to environment condi-
tions such as lighting which may change during an operation in
a factory. Moreover, vision based techniques are not suitable for
hand tracking while holding other objects due to occlusions.

Posture recognition systems for other body parts such as the
arm [15], leg [16], and body [17, 18] have also been extensively
studied. In principle, these works share techniques and goals
similar to that of hand tracking. Yet, the hand tracking problems
require higher resolution sensor readings as well as smaller hard-
ware restrictions for portability.

There exists a growing body of commercial hand gesture
recognition and tracking systems. Proglove [9] is a wearable de-
vice that demonstrates the need for tracking operations in a fac-
tory environment. Proglove is designed to scan and display the
items which are being touched or handled for industrial logistics,
hence is not concerned with hand pose estimation and tracking.
Gest (accelerometer-based) and Myo (acoustic-based) [12, 13]
are wearable devices that focus on hand gesture recognition to
control computers and machines. Compared to these devices,
our aim is to develop a wearable system that can be incorporated
into traditional work gloves with whole hand tracking capabili-
ties. Cyber Glove [?] is a motion capture device equipped with
22 sensors for full hand tracking. In contrast, understanding re-
dundancies and minimizing the number of sensors is key in our
approach to enable development of a comfortable and affordable
glove system. In addition, we introduce a training approach for
personalized calibration of glove systems.

Leap Motion and Kinect [12, 13] are vision-based hand
tracking devices primarily for virtual reality gaming. They
require external devices like cameras to be placed facing the
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tracked objects. Such non-portable settings requiring optical sen-
sors are not feasible in our target context. However, these ap-
proaches are very useful for training and calibration purposes.
As such, we use a Leap Motion system for the initial mapping
of strain sensor data to the joint angles. By combining the strain
sensor based tracking with the vision-based pretraining, we can
monitor hand poses even when the hand is occluded holding an
object and we can quickly train the algorithms for accurate per-
sonalized tracking. To our knowledge, our study is the first to
focus on real-time hand pose tracking with or without objects in
hand using only a few strain sensors.

3 Technical Approach
In this paper, our objective is hand pose tracking using a

simple and portable hardware setup and develop algorithms that
address our specific challenges. We divide our technical discus-
sions into two parts. First, we discuss the hardware design and
explain our algorithms for choosing informative sensor place-
ments. Second, we describe the hand tracking protocol and the
training procedure for personalized tracking that captures the
hand size and a possible initial deformation of the strain sensors.

3.1 Hardware Design and Initial Sensor Layout
As shown in Figure 1a, there are 14 joints in the hand. Our

approach aims to track the angular deformations at these joints
during the hand’s actual use. For our prototype, we choose a
latex glove in order to achieve a tight fit with the hand as a way
to increase strain readout fidelity. For the initial strain gauge
placement, we use 10 strain gauges as shown in Figure 1b. We
observe that the motion of the tip joints (J5, J8, J11, J14) are
strongly coupled with the mid joints (J4, J7, J10, J13) at each
finger making two of these joints on the same finger difficult to
move independently. Based on this observation, we place only
two sensors per finger, resulting on 10 total sensors (S1-S10).

3.1.1 Hardware Setup For the prototype, 10 strain
gauges (KFH-20-120-C1-11L1M2R, Omega) are attached to
a medium-sized Latex glove (Microflex Diamond GripTM,
ULINE) using double-sided tape. The glove is worn by a human
subject and the hand is laid flat on a flat surface prior to attach-
ing the sensors as shown in Figure 1b. This configuration simply
establishes a strain-free datum for the sensor network. Any sub-
sequent hand motion is registered via the tensile or compressive
strain readouts. Once the sensors are attached, this particular
glove is used by all human subjects without changing the sensor
locations, with user-specific pretraining as will be discussed in
Section ??.

As shown in Figure 3, we use an Arduino microcontroller
board for the strain readouts with a Wheatstone bridge amplifier

FIGURE 1. (a) Fourteen joints in the hand. (b) Ten strain sensor lay-
out on a latex glove.

(INA125P-ND, Texas Instruments), whose output is then chan-
neled to the analog port of the Arduino Mega Board to register
the 10 strain gauges.

FIGURE 2. The schematic design of hardware setup (1 channel).

3.2 Data Collection and Sensor Layout Optimization
In this section, we explain the data collection and sensor se-

lection process to determine which sensor configurations provide
the highest information gain as measured through a gesture clas-
sification system. This process is repeated for a range of target
sensor numbers (3 through 10 sensors). For each target num-
ber of sensors, we identify the best strain gauge choices using
the classification performance on the English letters in American
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FIGURE 3. The hand gestures used in our sensor selection study. P0
corresponds to neutral hand pose that serves as a calibration point. P1
to P13 are the first 13 letters (A-M) in American Sign Language. Image
courtesy Dr. Bill Vicars at Lifeprint.com.

Sign Language (ASL) as a way to assess the candidate sensor
choices (Figure 4). Toward this goal, three users (two males, one
female) perform the static gestures for the first 13 letters of the
ASL while wearing the instrumented glove. For each user, pose
0 serves as the neutral calibration point to zero all sensor read-
outs prior to each trial. In each iteration, the user presents pose
1 through pose 13 while holding each pose for approximately
10 seconds. The sensor readouts are recorded at every 100 mil-
liseconds. Each user repeats the experiment for the second time
by taking off the glove and wearing it again. Following data
collection, the transition periods between the thirteen poses (the
leading and trailing two seconds for each pose) are removed.

Next, the data obtained from the three users is aggregated
into a large set, separated into two bins: First time wear (all users
aggregated) and second time wear (again, all users aggregated).
The first time wear data is used for training, and is further broken
into 10-fold training and validation sets. For each target number
of sensors, we use a multi-class support vector machine (SVM)
with cross validation to determine the strain gauge combinations
that yield the highest user-independent recognition accuracy on
the ASL test.

Table 1 shows the recognition accuracy on the ASL data for
sensor configurations consisting of only three sensors (i.e., top 5
of C

(10
3

)
choices). The training accuracy (trained on first time

wear data) reports the average of the validation runs for each
configuration, while the test accuracy reports the results on the
test set (second time wear data). The fall-off between the training
accuracy and test accuracy mainly results from the misalignment
among different wearings. As shown, S5, S8 and S9 form the
best 3-sensor configuration.

Table 2 summarizes the best sensor choices as a function of
the target number of strain gauges.

3.3 Hand Tracking
After we establish the optimal sensor choices, next we de-

scribe the hand tracking process. For hand tracking, the key need
is to map the strain sensor readouts to the fourteen joint angles

TABLE 1. Recognition accuracy of the best five sensor configurations
using three strain gauges.

Configuration Training Accuracy(%) Test Accuracy(%)

S5,S8,S9 98.29 63.44

S5,S6,S8 95.96 59.56

S5,S6,S9 93.11 58.72

S6,S8,S9 90.90 57.04

S7,S8,S9 94.02 50.80

TABLE 2. Best sensor configuration for each target number of strain
gauges (3 to 9).

No. of target SGs Best Configuration

3 S5,S8,S9

4 S6,S7,S8,S9

5 S5,S6,S7,S8,S9

6 S2,S4,S5,S7,S8,S9

7 S1,S2,S4,S5,S7,S8,S9

8 S1,S2,S3,S5,S6,S7,S8,S9

9 S1,S2,S4,S5,S6,S7,S8,S9,S10

through a training protocol, and use this map as a way to predict
the hand pose during actual use. However, the main challenge
is in the prediction of the high degrees of freedom joint angles
from a fewer number of sensor readouts.

3.3.1 Training for Pose Tracking: Data Collection
For training, we establish a map between the strain sensor read-
outs and the joint angles with the help of the Leap Motion depth
sensor (Figure 5). This system allows the capture of all four-
teen joint angles in a controlled environment, thus establishing
the ground truth for the strain to joint angle mapping.

During training, the users move their hands through random
poses while wearing the instrumented glove. The hand motion
should be slow enough for strain sensor readings to stabilize
against the Leap Motion data capture. Note that this stabilization
is only needed during training to match strain sensor readings to
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Leap Motion data. Hence, no speed restriction is present once
the system is trained.

FIGURE 4. Optical training process using the Leap Motion system.

Figure 12 shows the amount of variation in each of the four-
teen joint angles (abs(Anglemax−Anglemin)) as captured through
the Leap Motion system. These variations are important to note
as they will allow an assessment of the RMSE values reported in
Section ??.

FIGURE 5. The range of the joint angles captured through the Leap
Motion system.

A new user wears and trains the glove for a duration of 3
minutes. During this phase, the strain readouts and the joint angle
readouts are captured at different frequencies, and moreover, the
sampling may be non-uniform within each channel. These two
input streams are thus registered by acquiring them through the

same computer and using the system clock as a reference for
registration. This produces a large set of registered strain versus
joint angle pairs (approximately between 1500 to 1700 pairs) that
are used for the next step of training. Note that this training is
repeated for each new user to accommodate differences in hand
shapes and sizes.

3.3.2 Training Algorithms To map the strains to the
joint angles, we use linear regression, quadratic regression, and
feed-forward neural regression. Note that, for these regression
models, the mapping is from k strain gauges to the 14 joint angles
(where k < 14).

Linear Regression: For linear regression with bias, this
map can be represented as follows:

ST = J (1)

where S is the N × (k+1) strain data matrix (with bias), N is the
number of training data points, k is the number of target strain
gauges. J is the corresponding N×14 joint angle matrix encoded
in a similar way. T is the desired mapping matrix. We use a linear
least squares solver with L2 regularization to obtain the map T.

Quadratic Regression: Quadratic regression follows a
structure similar to that of the linear regression model, except
the width of S and the height of T are increased to account for
the quadratic terms, while using the same number of training data
as before.

Neural Regression: Lastly, we build a feed-forward neural
network to estimate T. The network admits the strain sensor data
as input and estimates the joint angle data on the output. We train
various neural networks with different complexities. Both single
and double layer networks are tested, with the number of hidden
nodes in each layer ranging from 10,20, · · · ,50. The sigmoid
activation function is used in the hidden layers. Each network is
trained three times and is assessed based on the average RMSE.

4 Results and Discussions
In all of our experiments, we trained our algorithms with

90% of shuffled data and tested it with the remaining 10%.

4.1 Neural Network Optimization
We conducted parametric studies to identify the best per-

forming neural network structure. For a single hidden layer, we
varied the number of hidden nodes from 5 to 50 with an incre-
ment of 5. In all cases, the training continues until an increase in
the validation error is observed. The resulting average RMSE
values (over different numbers of target input sensors) corre-
sponding to the different number of hidden layer nodes is shown
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in Figure 8. We deem 15 hidden layer nodes to be a good com-
promise between network complexity and accuracy.

FIGURE 6. RMSE for single hidden layer neural networks as a func-
tion of hidden nodes.

Similarly, a two hidden layer network was also explored.
Here, the number of hidden layer nodes in the first and second
hidden layers are varied from 10 to 50 with an increment of 10.
Based on the results shown in Figure 9, we choose the network
with 10 first layer nodes and 30 second layer nodes (RMSE of
2.73◦).

While the optimal single and two hidden layer networks
perform well with low RMSE values relative to the joint angle
ranges (Figure 8 and 9 versus Figure 12), we use the two hid-
den layer network over the single hidden layer network in the
remainder of this work.

FIGURE 7. RMSE for two hidden layer neural networks as a function
of hidden layer nodes.

4.2 Comparison of Regression Models
Figure 13 summarizes the performance of our linear (LR),

Quadratic (QR) and neural network regression (NN) models, re-
ported as the RMSE values of the models applied to the test
data and averaged over the fourteen joint angles. As shown, QR
and NN produce markedly better estimations over LR (smaller
RMSE is better).

For each model, as the number of sensors increases, the
RMSE values exhibit a declining trend as expected. Of note is
the fact that even with only four sensors, the NN produces re-
sults that are better than the ten-sensor models of LR and QR. As
such, we deem the NN model with four sensors as the best model
to deploy with the observed data, as it provides a favorable trade-
off between simplicity and test accuracy. As shown in Table 2,
this results suggests the use of NN model with strain sensors S6,
S7, S8, and S9.

4.3 Insights into the Joints
Figure 10 provides a more detailed view of the RMSE val-

ues. In particular, Figure 10 shows - for each joint - the RMSE
values for the three regression models for configurations of ten
sensors as well as four sensors1. For all joints, the NN model
produces lower RMSE values. Moreover, for the proposed four-
sensor configuration (Figure 13 right), the maximum RMSE for
the NN is observed at J3 and J6. Interestingly, these two joints
also result in the worst RMSE values for LR and QR. And even
more interestingly, these joints are also responsible for produc-
ing the worst RMSE values for the ten-sensor configuration (Fig-
ure 13 left).

Figure 11 shows the R2 values for the three regression mod-
els over the different joints. In this case, the higher the R2, the
better the improvement in the prediction model, compared to the
mean model. As seen, the NN model is still the best when it
comes to explaining the variation in the data.

5 Conclusions
This work presents a trainable instrumented glove that is ca-

pable of predicting the fourteen joint angles on a hand using as
few as four strain gauges. The long term goal of this study is
to enable wearable gloves that can be used in factory settings to
monitor workers’ hand usage over extended periods of time. The
proposed algorithms and prototype system offer a step toward
this goal.

During deployment, hand pose prediction that relies solely
on strain readouts has the advantage of not being restricted by
bulky hardware and other impediments common to optical sens-
ing systems such as object occlusions and lighting. Our work,
however, takes a significant advantage of the optical tracking

1Note that Figure 13 reports an average RMSE over these joints.
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FIGURE 8. Comparison between different regression models with varying numbers of target strain gauges.

FIGURE 9. RMSE of three regression models using 10 strain gauge data (left) or 4 strain gauge data (right).

FIGURE 10. R2 of three regression models using 10 strain gauge data (left) or 4 strain gauge data (right).

system by offering a short training phase that allows the deter-
mination of a robust mapping from the physical strain space to
an optically captured joint angle space. The optical tracking is
only confined to the training phase, thereby making the proposed
system usable during deployment.

Our work has demonstrated that a training duration as short
as 3 minutes provides sufficient data to learn a useful mapping
from the strain gauges onto the joint angles, thereby making the

proposed system practically viable in real-world settings.

While our work uses conventional strain gauges for the de-
velopment of the methodology, the same infrastructure and algo-
rithmic approach can be immediately adopted for use with more
advanced strain sensors with smaller footprints or with those us-
ing soft materials and continuous electronic circuitry. We intend
to explore this direction as the immediate next step.
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5.1 Limitations and Future Work:
Our current study is limited to the prototype glove that in-

cludes both sensing and tethered data transmission. An imme-
diate improvement would be to incorporate wireless data trans-
mission. This setup would include a data receiving hardware that
connects to the computer system following the same hand track-
ing algorithms presented in this paper.

Another future direction involves extending glove usage and
data collection over durations measured in hours. This way, we
can investigate the performance of our hand pose tracking ap-
proach for actual use cases with long operational times.

Finally, in future studies, we intend to improve the glove
ergonomics, as well as to explore using soft materials and con-
tinuous electronic circuitry in the glove to improve comfort. We
envision a glove system in which both sensing and circuitry de-
sign is further informed by ergonomic considerations.
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