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ABSTRACT

DEVELOPMENT OF A MODULAR CONTROL
ALGORITHM FOR HIGH PRECISION POSITIONING

SYSTEMS

Nurcan Geçer Ulu

M.S. in Mechanical Engineering

Supervisor: Assist. Prof. Dr. Melih Çakmakcı

August, 2012

In the last decade, micro/nano-technology has been improved significantly.

Micro/nano-technology related products started to be used in consumer mar-

ket in addition to their applications in the science and technology world. These

developments resulted in a growing interest for high precision positioning systems

since precision positioning is crucial for micro/nano-technology related applica-

tions. With the rise of more complex and advanced applications requiring smaller

parts and higher precision performance, demand for new control techniques that

can meet these expectations is increased.

The goal of this work is developing a new control technique that can meet

increased expectations of precision positioning systems. For this purpose, control

of a modular multi-axis positioning system is studied in this thesis. The multi-

axis precision positioning system is constructed by assembling modular single-axis

stages. Therefore, a single-axis stage can be used in several configurations. Model

parameters of a single-axis stage change depending on which axis it is used for.

For this purpose, an iterative learning controller is designed to improve tracking

performance of a modular single-axis stage to help modular sliders adapting to

repeated disturbances and nonlinearities of the axis they are used for. When

modular single-axis stages are assembled to form multi-axis systems, the interac-

tion between the axes should be considered to operate stages simultaneously. In

order to compensate for these interactions, a multi input multi output (MIMO)

controller can be used such as cross-coupled controller (CCC). Cross-coupled con-

troller examines the effects between axes by controlling the contour error resulting

in an improved contour tracking.
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In this thesis, a controller featuring cross-coupled control and iterative learning

control schemes is presented to improve contour and tracking accuracy at the

same time. Instead of using the standard contour estimation technique proposed

with the variable gain cross-coupled control, presented control design incorporates

a computationally efficient contour estimation technique. In addition to that,

implemented contour estimation technique makes the presented control scheme

more suitable for arbitrary nonlinear contours and multi-axis systems. Also, using

the zero-phase filtering based iterative learning control results in a practical design

and an increased applicability to modular systems. Stability and convergence of

the proposed controller has been shown with the necessary theoretical analysis.

Effectiveness of the control design is verified with simulations and experiments

on two-axis and three-axis positioning systems. The resulting controller is shown

to achieve nanometer level contouring and tracking performance.

Keywords: Iterative learning control, cross-coupled control, precision motion con-

trol.



ÖZET

YÜKSEK HASSASİYETLİ POZİSYONLAMA
SİSTEMLERİ İÇİN MODÜLER KONTROL

ALGORİTMASI GELİŞTİRİLMESİ

Nurcan Geçer Ulu

Makine Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Melih Çakmakcı

Ağustos, 2012

Son on yıl içinde, mikro/nano-teknoloji büyük ölçüde gelişti. Mikro/nano-

teknoloji ile ilgili ürünler bilim ve teknoloji dünyasındaki uygulamaların yani

sira tüketici marketinde de yer almaya başladı. Bu gelişmeler yüksek hassasiyetli

pozisyonlama sistemlerine olan ilgiyi arttırdı çünkü yüksek hassasiyetli pozisyon-

lama sistemleri mikro/nano-teknoloji ile ilgili uygulamalarda cok önemli bi yere

sahiptir. Daha kompleks ve ileri düzeydeki uygulamalarin daha sıkı toleranslar

ve daha küçük parcalar gerektirmesi sonucunda bu beklentileri karşılayabilecek

yeni kontrol tekniklerine olan ilgi artmıştır.

Bu çalışmanın amacı yüksek hassasiyetli pozisyonlama sistemlerine yönelik

artan ilgiyi karşılayabilecek yeni bir kontrol tekniği geliştirmektir. Bu amaçla,

modüler çok eksenli pozisyonlama sisteminin kontrolü çalısılmıştır. Bahsi geçen

çok eksenli pozisyonlama sistemi modüler tek eksenli kızakların birleştirilmesiyle

oluşturulmuştur. Böylece, tek eksenli pozisyonlama sistemi birkaç şekilde kul-

lanılır ve kullanıldığı alana göre model parametreleri değişir. Bu sebeple, modüler

kızakların kullanıldığı alana uyum sağlamaları ve takip hatalarını azaltabilmeleri

için tekrarlamalı öğrenme kontrolcüsü geliştirilmiştir. Çok eksenli pozisyonlama

sisteminde, kızaklar aynı anda hareket ettirildiğinde birbirleri arasındaki etk-

ileşimler göz önünde bulundurulmalıdır. Bu etkileşimlerin etkisini azaltmak için

çapraz bağlaşımlı kontrolcü kullanılabilir ve böylece kontur hatası azaltılabilir.

Bu tezde, takip ve kontur hatasını birlikte azaltmak üzere çapraz bağlaşımlı

kontrolcü ve tekrarlamalı öğrenme kontrolcüsünün bir arada kullanıldığı bir kon-

trolcü geliştirilmiştir. Çapraz bağlaşımlı kontrolcü ile birlikte sunulan kontur

tahmin yöntemi yerine işlemsel olarak daha verimli bir kontur tahmin yöntemi

kullanılmıştır. Bunun yanında, kullanılan yöntem herhangi bir kontur kontrolü
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için ve çok eksenli sistemlerde kullanmak için daha uygundur. Ayrıca, tekrar-

lamalı öğrenme kontrolcüsünün kullanılması, pratik bir tasarima ve modüler

sistemlere uygunluğ arttırmaya yarar. Ayrıca, önerilen kontrolcünün kararlılık

ve yakınsama karakteristiği incelenmiştir. Kontrolcünün etkililiği iki ve üç ek-

senli sistem üzerinde yapılan simulasyon ve deneylerle gösterilmiştir. Sonuçta

ortaya çıkan kontrolcü ile nanometre hassasiyetinde takip ve kontur performansı

gözlemlenmiştir.

Anahtar sözcükler : Tekrarlamalı öğrenme kontrolü, çapraz bağlaşımlı kontrol,

hassas haraket kontrolü.
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Chapter 1

Introduction

Recently, micro/nano-technology has been improved significantly. Micro/nano-

technology related products started to be used in consumer market in addition to

their applications in the science and technology world. These developments re-

sulted in a growing interest for high precision positioning systems since precision

positioning is crucial for micro/nano-technology related applications. For exam-

ple, multi-axis precision positioning is required in micro/nano-scale manufactur-

ing and assembly, optical component alignment systems, scanning microscopy

applications, nano-particle placement applications, cell/tissue engineering and

etc.[4, 5, 6]. With the rise of more complex and advanced applications requiring

smaller parts and higher precision performance, demand for new control tech-

niques that can meet these expectations is increased.

In an effort to develop a new control technique for high precision positioning

systems, control of a modular positioning system is studied in this thesis. The

positioning system is modular in the sense that it is constructed by the same

single-axis slider to form two-axis and three-axis slider systems. Here, it is aimed

to be able to control single-axis, two-axis and three-axis precision positioning sys-

tems. In a single-axis precision positioning system, tracking performance is one

of the most important factors. For multi-axis systems, high contouring perfor-

mance is also required. Therefore, in order to achieve high precision positioning,

tracking and contouring performance should be considered.

1



In literature, most of the studies on contour control focus on increasing track-

ing performance of each axis in order to lead better contour performance. More-

over, some specially designed multi-input-multi-output (MIMO) control algo-

rithms consider the effects between moving axes so that the resulting contour

performance is improved. Tracking control algorithms and contour control al-

gorithms can also be used together to achieve higher tracking and contouring

performances.

In this thesis, an new method based on cross-coupled control (CCC) and

iterative learning control (ILC) which benefits from the contouring error vector

approach is presented for multi-axis systems. CCC is a special type of MIMO

control that uses contour error as the control parameter whereas ILC is a feed-

forward control method that is widely used for tracking control. Since proposed

method also benefits from the contouring error estimation vector approach, it

is computationally more efficient, more suitable for coupling gain calculations of

arbitrary nonlinear contours and easier to implement on multi-axis systems than

traditional approaches. Moreover, the presented method utilizes ILC via zero-

phase filtering so that the design process for ILC is practical and suitable for

modular systems. Since the positioning system is modular, the single-axis stage

can be used as x-axis, y-axis or z-axis. Use of iterative learning control also helps

modular sliders adapting to repeated disturbances and nonlinearities of the axis

they are used for.

Positioning systems, with the increased demand from the industry, are re-

quired to have both high precision and high speed operation capabilities in recent

years. However, uncontrolled accelerating or decelerating motion causes residual

vibrations during high-speed operation. Hence, the accuracy of the system de-

creases whereas the settling time increases. However, residual vibrations can be

prevented by planning the reference trajectory of the system in a way that accel-

eration and deceleration phases are smoothed out. Although control algorithm

presented in this thesis increases contouring and tracking performance, reference

trajectory planning is essential for further improvements to achieve high preci-

sion. For this purpose, generic s-curve method is employed in this thesis. In

this method, position input is designed as an s-shaped curve so that there is no

2



sudden change in acceleration and velocity during the operation.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

modular positioning system used in this thesis with its control setup. Also, the

single-axis slider system is examined through its mathematical model considering

the assembly configurations. In Chapter 3, tracking control and contour control

approaches used in literature are discussed. Chapter 4 presents the learning

based cross-coupled controller as well as the cross-coupled controller and iterative

learning controller. Stability and convergence of the controller is also analyzed

in this section. Effectiveness of the presented control design is verified with

simulations and experiments on two-axis and three-axis positioning systems using

nonlinear contours in Chapter 5. Simulation and experiment results are supplied

for single-axis system control for an s-curved trajectory. Trajectory planning

procedure is also explained in this chapter. In Chapter 6, robustness of the control

algorithm implementation is tested through some experiments that are designed

considering the expected disturbances and system uncertainties. Conclusion and

future work is discussed in Chapter 7.

3



Chapter 2

System Setup and Modeling

This chapter introduces the positioning system used in this thesis with its control

setup. Also, the single-axis slider system is examined through its mathematical

model development. For this purpose, first, components of the single-axis slider

system are explained. Then, control setup is described with the electronic equip-

ment and software used for the control implementation. Whole system with the

physical environment is also given as the testbed. Multi-axis configurations of

the slider system that are used for the experiments are also provided. To design

a controller, mathematical model is an essential requirement. For this reason,

a theoretical model of the single-axis slider system is derived and improved by

experiments. This section is a revised version of the work given in [7]

2.1 System Setup

Control of single-axis, two-axis and three-axis positioning system is practiced

in this thesis. Therefore, system setup includes single-axis and multi-axis (two-

axis and three-axis) positioning systems. Moreover, there are other electronicl

components and software used for the control of these positioning systems. In

order to explain the system setup, single-axis slider system, control setup and

multi-axis positioning system are described in this section.

4



Figure 2.1: Single-axis slider system

2.1.1 Modular Single-Axis Slider System

A modular single-axis stage (Figure 2.1) is composed of a stationary base and a

moving slider that are connected to each other via cross-roller linear bearings. The

stage is actuated by a brushless permanent magnet linear motor from Aerotech

Inc. whereas the position feedback is taken from an incremental linear encoder

from Heidenhain Corp. Since position is measured directly on the stage with a

linear encoder, positioning becomes extremely reliable. The linear encoder has

an optical scale with four micrometer in pitch leading one micrometer resolution.

However for our system, the encoder resolution is increased to 25 nm using an

interpolation technique. Details of interpolation procedure can be found in [8].

Travel range of the stage is 120mm and the maximum encoder traversing speed

that is 500mm/s limits velocity of the system.

2.1.2 Control Setup and Testbed

In addition to the positioning system, electronic hardware and software is used

for the control of the system. First a control panel should be developed to give

inputs to the system and implement the developed control architecture. For this

purpose, Labview software is used on a PC. The control signal is transferred to the
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Figure 2.2: Closed loop control setup of the single-axis system

amplifier by data acquisition system. Then, a standard current commanded six-

point commutation amplifier is used for commutation of three phases of the linear

motor. The position feedback is taken from the encoder by the data acquisition

system. Closed loop configuration of the control setup for single-axis stage is

given in Figure 2.2.

For precision positioning systems, small disturbances can deteriorate the per-

formance significantly. Due to this fact, elimination of disturbances is very im-

portant. One of the most important disturbance type may be the environmental

vibration. In order to minimize environmental vibration, the modular stage is

mounted on a vibration isolation table. Figure 2.3 shows the photograph of

testbed for the single-axis slider system.

2.1.3 Multi-Axis Positioning System

In this thesis, two-axis and three-axis positioning system control is studied for

multi-axis position control. The two-axis positioning system is constructed by

assembling two modular single-axis stages perpendicularly as in Figure 2.4. In

three-axis positioning system, a vertical axis is used in addition to two horizontal

axes (Figure 2.5). In order to assemble vertical axis, an adapter is used. This

adapter part is composed of an L-beam and a counterbalance system that is used

for the compensation of vertical sliding mass.
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Figure 2.3: Photograph of testbed for the single-axis slider system

2.2 Modeling

Mathematical model is crucial for simulation studies and theoretical analysis. In

this section, mathematical model of a single-axis slider is derived. Then, the

mathematical model is improved by experiments to achieve matching responses

for simulations and experiments.

2.2.1 Mathematical Model of The Modular Single-Axis

Slider System

The slider system is composed of two main components as the fixed base and the

sliding part. Figure 2.6 presents the sliding part of the single-axis slider system.

This part is composed of aluminium top, motor track, encoder scale and one side

of the bearings. The only contact mechanism in the sliding part is the linear cross-

roller bearings. Moreover, the actuating force comes from motor track. These

forces are shown in Figure 2.6.
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Figure 2.4: Two-axis positioning system

Figure 2.5: Three-axis positioning system
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Figure 2.6: Forces acting on the moving slider

As mentioned in the previous sections, single-axis slider system can be used

in both horizontal and vertical configurations. Therefore, both configurations

should be considered for the mathematical model. In Figure 2.7, forces acting on

the sliding mass in the direction of movement is given for both horizontal and

vertical configurations of the slider. In the free body diagram, linear bearings

are modeled as part of the viscous friction component. Moreover, force ripple in

the linear motor is neglected. Since use of counter balance aims to compensate

weight of the sliding mass. counter balance force, fc is equal to the weight of

the sliding mass, mg. When these two forces cancel each other, horizontal and

vertical free body diagrams are equivalent. Therefore, both configurations of the

sliding mass can be modeled through same equations.

Idealized dynamic model of a single-axes linear stage is given in Figure 2.8

where R is linear motor resistance, L is linear motor inductance, KBEMF is back

electromotive constant, Kforce is force constant, m is sliding mass, b is viscous

friction, e is linear motor input voltage, Kamp is amplifier gain and i is linear

motor current. In the dynamic model, ripple forces of the permanent magnet

linear motor are neglected and linear bearings are modeled as viscous friction

component as in free body diagram.
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Figure 2.8: Dynamic model of the single-axis system

Using Newton’s law of motion, equation of motion for the sliding part can be

given as

f(t)− bẋ(t)−mẍ(t) = 0 (2.1)

Dynamic equations of the permanent magnet linear motos are found as

e(t) = Kamp(Ri(t) + Li̇(t)−KBEMF ï(t)) (2.2)

f(t) = Kforcei(t) (2.3)
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Taking Laplace transform of (2.1), (2.2), (2.3) and arranging, plant transfer

function from input voltage e to slider displacement x is found as in (2.4). Block

diagram of the single-axis slider plant, P , is given in Figure2.9.

P (s) =
X(s)

E(s)

=
KampKforce

s[Lms2 + (Rm+ bL)s+ (Rb+KBEMFKforce)]

(2.4)

Figure 2.9: Block diagram of the mathematical model

2.2.2 Model Improvement Tests

In the transfer function of the plant, viscous friction, and amplifier gain is un-

known. Hence, series of experiments are conducted to obtain a numerical expres-

sion for the transfer function between input voltage, e, and slider displacement,

x. For this purpose, plant transfer function of single-axis slider system is approx-

imated by

P (s) =
X(s)

E(s)
=

GDCω
2
n

s(s2 + 2ζωns+ ω2
n)
e−sτ (2.5)

where GDC is DC gain, ζ is damping ratio, ωn is natural frequency, and τ is

time delay.
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In order to find DC gain, open loop steady state step response of the plant

can be used. However, when constant step input is send to open loop plant,

position response gives a ramp like output due to the free integrator in the transfer

funkiction. Yet, velocity response may reach a steady state value. Since velocity is

simply time derivative of displacement, the transfer function between the control

input and velocity can given as in (2.6). In the equation, V (s) represent the

laplace transform of velocity, ẋ(t).

Pv(s) =
V (s)

E(s)
=

GDCω
2
n

s2 + 2ζωns+ ω2
n

e−sτ (2.6)

A step input with magnitude, a, is applied to the system. Laplace transform

of a step input with magnitude, a, is

E(s) =
a

s
(2.7)

Then, the step response is found as in (2.8). Steady state value of the velocity

response is derived by taking limit of the step resonse. When t → ∞, s → 0.

Therefore, steady state value for velocity response, vss, becomes (2.9). Using

(2.9), the relation to calculate DC gain is obtained as (2.10)

V (s) = E(s).Pv(s) =
aGDCω

2
n

s2(s2 + 2ζωns+ ω2
n)
e−sτ (2.8)

vss = lim
s→0

V (s) = lim
s→0

aGDCω
2
n

s2(s2 + 2ζωns+ ω2
n)
e−sτ = a.GDC (2.9)

GDC =
vss
a

(2.10)

Velocity response of the plant for step input with magnitude of 0.49V is fiven

in Figure 2.10. As can be observed from the figure, steady state value of velocity is

about 150−155mm/s. Considering these values, DC gain is taken as 318mm.V/s.

In the experiments, magnitude of the control input is critical because slider does

not even move under 0.49V and velocity can not reach a steady state value before

12



track is finished when the control input is higher. Due to this fact, velocity

response could not be provided for a longer range of motion in Figure 2.10.
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Figure 2.10: Velocity step response

For gross estimates of ζ and ωn, velocity impulse response characteristics are

examined through series of experiments. The obtained velocity impulse response

is fitted to the time solutions for the impulse response, c(t), for over-damped

(ζ > 1) systems given in [9] as

c(t) =
ωn

2
√
ζ2 − 1

e−(ζ−
√
ζ2−1)ωnt − ωn

2
√
ζ2 − 1

e−(ζ+
√
ζ2−1)ωnt for t ≥ 0 (2.11)

so that the system characteristics ζ and ωn are obtained as 1.1rad/s and

150rad/s. On the other hand, τ can be estimated as 0.015s by observing the

closed loop step response for position loop and the controller output.

In order to compare the simulation and experimental results of the model, a

PID controller is designed. Structure of the controller is

Gc(s) = Kc(1 +
1

Tis
+ Tds) (2.12)

where Kc, Ti and Td are proportional gain, integral time and derivative time,

13



respectively. In order to design the PID controller, Gc(s), the design objective is

chosen so that the closed loop transfer function is

Gc(s)P (s)

1 +Gc(s)P (s)
=

1

1 + sTα
(2.13)

where Tα is the desired time constant of the closed loop response. Following

the work given in [3], PID controller parameters can be chosen as

Kc =
1

GDCTdTαω2
n

Ti =
2ζ

ωn
Td =

1

ω2
nTi

(2.14)

(a) (b)

(c)

Figure 2.11: Step response characteristics comparison for (a) Position, (b) Posi-
tion Error and (c) Controller Output
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Choosing a suitable Tα, PID controller parameters are obtained using (2.14).

However, these parameters give a step response with undesirable overshoot in the

simulation. Hence, by fine tuning, a new set of PID controllers are obtained so

that the system shows over-damped step response characteristics both in simu-

lation and experiment as shown in Figure 2.11. The system behavior with these

controller parameters are similar for simulation and experiment proving that the

mathematical model estimation is well enough to describe the system.

15



Chapter 3

Literature Survey

Recently, micro/nano-technology has been improved significantly. Micro/nano-

technology related products started to be used in consumer market in addition

to their applications in the science and technology world. These developments

resulted in a growing interest for high precision positioning systems since precision

positioning is crucial for micro/nano-technology related applications. With the

rise of more complex and advanced applications requiring smaller parts and higher

precision performance, demand for new control techniques that can meet these

expectations is increased.

In an effort to develop a new control technique for high precision positioning

systems, control of a modular positioning system is studied in this thesis. The

positioning system is modular in the sense that it is constructed by the same

single-axis slider to form two-axis and three-axis slider systems. Here, it is aimed

to be able to control single-axis, two-axis and three-axis precision positioning sys-

tems. In a single-axis precision positioning system, tracking performance is one of

the most important factors. For multi-axis systems, high contouring performance

is also required. Therefore, in order to achieve high precision positioning control,

tracking and contouring performance should be considered. Next two sections

will describe tracking control and contour control approaches used in literature.
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Figure 3.1: Trajectory tracking

3.1 Tracking Control

In tracking control, the objective is moving along a desired trajectory. In Figure

3.1, an example trajectory tracking is given. In the figure, the left plot shows

a better tracking response compared to the one at the right since most of the

actual movement is along the desired trajectory. Most commonly used tracking

control method is feedback control with PID [10, 5, 11, 12, 13]. Sliding mode

controller is also used as a feedback tracking control in [14, 15]. Almost all systems

employ feedback as a part of tracking control however substantial improvement

of tracking accuracy is achieved by addition of feed-forward control. Several feed-

forward control schemes developed to improve tracking accuracy in literature such

as zero phase error tracking control (ZPETC) [16, 17, 18], feed-forward friction

compensation [19, 14, 20] and iterative learning control (ILC) [3, 21].

Tracking performance of a ZPETC system is sensitive to variations in plant

parameters and modeling errors since ZPETC design is based on pole/zero can-

cellation and phase cancellation [16]. Friction compensation techniques generally

incorporate a system identification process that should be repeated if system pa-

rameters change. Tan et al. [3] claims that specifying a plant model for ILC via

zero phase filtering is not necessary due to the principle of self-support that is

argued in [22]. Since the stored control signals reflect the plant characteristics,

ILC can improve tracking performance of a system even the plant structure and
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nonlinearities are unknown [23]. However, the system should execute the same

task repetitively to be able to implement an ILC scheme.

Iterative learning control can be applied to the systems that repeatedly ex-

ecute the same operation. By applying it, experience gained from the repeated

execution is used to improve the performance of the system. Considering this fact,

iterative learning control schemes are suitable to be used in high precision con-

trol of linear motors. In the literature, there are a several cases in which various

iterative learning control schemes are applied in combination with some other

control techniques for linear motor control purposes. In [24], frequency based

ILC, H∞ based ILC and second order ILC approaches are considered for linear

motor motion system. Scholten simulated these three alternatives and compared

their performance. As a result Scholten concluded that the best performance is

achieved by second order ILC although all of the ILC types improved the per-

formance of the system with conventional control schemes. In all cases, Scholten

claims that the tracking error is decreased compared to the ones with the conven-

tional controllers. In [25], internal model based iterative learning control for linear

motor motion systems are considered. According to Fan et al., the main reason

for linear motor not to reach high tracking accuracy is nonlinear disturbances. In

order to achieve high tracking accuracy by rejecting the nonlinear disturbances,

they combine the iterative learning control with internal model control. Hence,

they claim that ILC based on internal model control can guarantee the robust

performance and high tracking accuracy with the experience obtained from early

stages of learning.

Linear parameter varying iterative learning control for linear motor systems is

explained in [26]. In this paper, the basic assumption is that the dynamics of the

system change between iterations. According to Butcher et al., permanent mag-

net linear motors are affected by periodic, position dependent force disturbance.

Although these periodic disturbances can be eliminated by using ILC, if the initial

position of the system changes, the disturbance changes so that learned input will

not lead to the optimal tracking. For this reason, they proposed linear parameter

varying ILC for linear motor control purposes. As a result of their work, it is

claimed that better results are obtained using the proposed method compared to

18



the one using linear time invariant ILC. Another research on iterative learning

based control of linear motor is given in [3]. They combined relay tuning and ILC

based on zero-phase filtering to control high precision linear motor in their work.

Tan et al. improves the tracking performance of the linear motor by applying

ILC based zero-phase filtering as feedforward controller to the relay tuned PID

feedback controller. As a result of experiments, the proposed method in their

work has higher effectiveness to be used in linear motor control purposes.

3.2 Contouring Control
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Figure 3.2: Tracking and contour error

In literature and commercial products, contouring control is achieved by im-

proving tracking of the systems. Generally, improving tracking accuracy of an

individual axis also increases contouring accuracy of the multi-axis system. How-

ever, reducing tracking error does not necessarily result in a reduction in contour

error in nonlinear cuts [27]. In some cases, decreasing the tracking error may not

decrease the contour error; it may even deteriorate the contouring performance.

This can be observed in Figure 3.2. The axial errors are defined as the distance

between the desired position, R and the actual position, Pa. Contour error, ε,

is defined as the distance between actual position and nearest position on the
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desired contour as shown in Figure 3.2. When the actual position is moved to P ′a

from Pa decreasing the axial tracking errors from ex and ey to e′x and e′y, contour

error, ε increases and becomes ε′. Therefore, special control approaches should

be employed for contour control since in contouring applications contour tracking

is more important then trajectory tracking.

For contouring control, first the system should have a good tracking control

in each single-axis. Then, contour control can be accomplished through different

MIMO control schemes. Koren [28] proposed the cross-coupled control (CCC)

structure that focuses on eliminating the error in contouring rather than tracking

in individual axes, This method is proven to reduce contour error significantly.

Since the introduction of CCC, many controllers based on CCC has been de-

veloped. Other than CCC and its modified versions, model predictive contour

control for biaxial feed drive systems is presented in [2]. Next subsections de-

scribe model predictive contouring control and CCC and CCC based contouring

controls. Then, contour error models are discussed.

3.2.1 Cross-coupled Control

For contour control, Koren proposed cross-coupled control (CCC), which is the

first control scheme to consider mutual dynamic effect among all axes, in [9].

Cross-coupled control scheme introduced the notion of finding the contour error

from multiple error signals, applying some form of control to the combined signal,

and feeding the new signal back into the respective systems. This concept is a

special type of multi input multi output (MIMO) control which aims to decrease

the contour error. Block diagram of this control scheme is given in Figure3.3.

In the block diagram, Cx and Cy are coupling gains whereas ε, ex, ey are the

contour error, x-axis tracking error and y-axis tracking error respectively. As can

be observed form Figure3.3, contour error is obtained through (3.1)

ε = −Cxex + Cyey (3.1)
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Figure 3.3: Block Diagram of CCC

Although CCC is first introduced with constant gains in [28], the term CCC

is generally used for CCC with variable coupling gains as proposed in [27]. The

next section describes the proposed modifications and combnations of CCC.

3.2.2 Variations and Combinations of CCC

Since the introduction of CCC, it has been modified and combined with different

control techniques. In this section development of CCC to its form that is used

today will be outlined. Then, other control designs integrating another control

schemes to CCC are examined.

First, Koren introduced CCC around 1980s [28]. This method was the first

approach to use a specific controller for contour control instead of improving

tracking accuracy only. In this approach, contour error is acquired by combining

axial error signals and feeding the new signal back into the respective systems

after applying some control. Then, this work was followed by several papers from

Kulkarni and Srinivasan [29, 30, 31, 32]. Srinivasan and Kulkarni came out with

a new CCC design which separated the contour error into two different signals

for the x and y axis respectively in 1990 [33]. After this design, Koren introduced

the variable-gain cross-coupling controller which is currently the most widely used

design in industry [27]. Recently, widely used CCC method is also adapted as in
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Figure 3.4: Block Diagram of Position Based CCC

Figure 3.4. This position based configuration of CCC is proposed in [34].

Tracking control and contour control are two essential parts of contouring. In

the literature, control schemes for tracking and contour control are combined in

various ways to improve contouring. Some examples can be given as observer-

based CCC [35], cross-coupled model reference adaptive control[36], cross-coupled

iterative learning control (CCILC) [21], CCC with disturbance observer and

ZPETC [18], CCC with friction compensation [14] and CCC with ILC [21, 37, 38].

3.2.3 Contour Error Estimation Models

Since CCC based control schemes require contour error as the control parameter,

there is a need for a contour error model in real time. Contour error is defined

as the distance between actual position and nearest position on the contour [1].

Contour error can be calculated easily for linear contours. However, this calcula-

tion is very complicated for nonlinear contours, especially during the operation.

Hence, some approximations have been used to calculate a nonlinear contour er-

ror. The most common one is using the circular contour assumption suggested by

Koren et al. [27]. Yeh and Hsu [1] proposed another method that approximates

contour error as the vector from the actual position to the nearest point on the

line that passes through the reference position tangentially. The latter approach
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has several advantages over the former as computational efficiency, suitability for

arbitrary contours and convenience for multi-axis implementation [1]. Recently,

an iterative approach is develop to improve estimated contour error in [39]. For

the estimation of contour error, there are two basic models circular contour ap-

proach and tangential contour error approximation. Next two parts will briefly

present these approximations.

3.2.3.1 Circular Contour Assumption

In this approach any arbitrary contour is separated into parts with radius of

curvature ρ and these parts are approximated by circles. Since contour error for

a circular contour is the difference between the distance from the actual position

to the center of the circle and radius of the circle, contour error for an arbitrary

contour can be written as (3.2)

ε =
√

(x− x0)2 + (y − y0)2 − ρ (3.2)

where (x0, y0) and (x, y) denote center of the curvature and actual position,

respectively. Expressing the actual position with respect to reference position and

axial tracking errors, ex, ey and using Taylor expansion, approximated contour

error becomes (3.3)

ε = (cos θ +
ey
2ρ

)ey − (sin θ − ex
2ρ

)ex (3.3)

where θ is traversal angle of motion and ρ is the radius of curvature at the

point. In (3.3), ρ is infinity for linear contours. Moreover, ρ becomes the constant

radius of circle for circular contours.
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Figure 3.5: Geometrical Relations of Contour Error (adopted from[1])

3.2.3.2 Contouring Error Vector Approach

Contour error vector approach can be explained through the geometrical relations

in the multi-axis motion control system given in Figure3.5. In the figure, −→e is

tracking error vector,
−→̂
ε is estimated contour error vector, −→ε is contour error

vector,
−→
t is normalized tangential vector, −→n is normalized normal vector, P is

actual position and R is reference position. In this approach, contouring error −→ε
is defined as the vector from the actual position to the nearest point on the line

that passes through the reference position tangentially with direction
−→
t [1]. This

approach estimates contour error vector very closely when tracking error is small

enough. Looking at Figure3.5,
−→̂
ε is equal to 〈−→e ,−→n 〉 where 〈., .〉 is inner product

operator. Hence, relation between
−→̂
ε and −→e can be obtained using inner product.

Furthermore, the contour error is calculated as |−→̂ε | =
∑
i
Ciei(i = x, y, z) where

Ci is coupling gain and ei is the corresponding axial tracking error. Considering

these two representations of estimated contour error vector, cross coupling gains

(Cx, Cy, Cz) in terms of normalized normal vector (−→n = [nx ny nz]
T ) are found

as Ci = ni(i = x, y, z, ). In other words, cross coupling gains at a point are the

elements of unit normal vector of the contour at that point.
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3.2.4 Model Predictive Contouring Control

This control method uses model predictive control strategy that utilizes an ex-

plicit process model and tracking error dynamics to predict the future behavior

of a plant. Model predictive contouring control delivers a novel approach towards

improving contour accuracy. As mentioned in previous section, contour error can

be estimated as the vector from the actual position to the nearest point on the

line that passes through the reference position tangentially. Considering this the

error components orthogonal to the desired contour curves are more important

than tracking errors, and hence, control inputs are found from the normal and

tangential components of the axial errors.

Figure 3.6: Model Predictive Contouring Control Diagram [2]

Block diagram of the proposed contouring control system is as in Figure 3.6.

In the MPCC box, a minimization problem given in (3.4) is solved. ρcn and

ρct are weighting factors to adjust the importance of the error component in

the orthogonal and tangential directions, respectively, ρn and ρt are weighting

factors used to adjust the control inputs in the normal and tangential directions,

respectively, and uxj ; uyj ; unj and utj are the jth control inputs in the x, y, n

and t directions, respectively, HM and Hp defines the prediction horizon.
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J = ρcn

Hp∑
j=HM

enj

2 + ρct

Hp∑
j=HM

etj
2 + ρn

Hp∑
j=HM

unj

2 + ρcn

Hp∑
j=HM

utj
2 (3.4)

3.3 Conclusion

To sum up, tracking control and contour control are two essential parts of con-

touring. In the literature, control schemes for tracking and contour control are

combined in various ways to improve contouring. Model predictive contouring

control method provides an efficient contour control. However, cross-coupled

control has been used for this purpose for a longer time and effectiveness of this

method is proven by many researchers. Moreover, model predictive contouring

control is only used for biaxial systems although it is claimed that the controller

can be extend to multi-axis systems. In this thesis, developed controller should

work on multi-axis systems that can be have more than two axes. Moreover,

using ILC is beneficial for our system since it is modular. The slider system can

be used for many positions, being able to improve its tracking is an advantage of

ILC when position of the modular slider is changed. This way, system can show

good performance even its position is changed or any other slider is assembled on

it.

For contour error estimation models, although two described approaches give

similar results in terms of contouring accuracy, contour error vector method has

several advantages over the circular contour assumption. Firstly, it is computa-

tionally more efficient. An extensive study on the computational efficiency of the

contour error vector approach over the circular contour approach is given in [1].

Moreover, with contour error approach, coupling gains can be computed easier

for an arbitrary contour. Also, implementation of contour error vector approach

to multi-axis systems is accomplished by the same procedure used for two-axis

systems and this procedure is well established. Therefore, contour error vector

approach is more suitable for multi-axis systems.
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Chapter 4

Development of The Control

Algorithm

The multi-axis precision positioning system is constructed by assembling modular

single-axis stages. The single-axis stage is modular in the sense that couple of

them can be assembled together to form two or three-axis positioning systems.

Therefore, a single-axis stage can be used as x-axis, y-axis or z-axis. Model

parameters of a single-axis stage change depending on which axis it is used for.

For this reason, an iterative learning controller is designed to improve tracking

performance of a modular single-axis stage after a feedback controller is found

as explained in Chapter 2. Use of iterative learning control also helps modular

sliders adapting to repeated disturbances and nonlinearities of the axis they are

used for.

In this chapter, an new method based on CCC and ILC which benefits from

the contouring error vector approach is presented. A preliminary study for using

CCC and ILC together is given in [38]. Also, Barton et al. worked on controllers

incorporating CCC and ILC for contours combining lines and circles on a two-

axis system in [21, 37]. As one of the main contributions, proposed method

also benefits from the contouring error estimation vector approach. The method

presented here is computationally more efficient, more suitable for coupling gain
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calculations of arbitrary nonlinear contours and easier to implement on multi-

axis systems than traditional approaches. Moreover, our method utilizes ILC via

zero-phase filtering so that the design process for ILC is practical and suitable

for modular systems. Other important contribution of the method is that this is

the first time CCC and ILC is used together to achieve nanometer level precision.

Moreover, the controller is not only designed for two-axis systems but also multi-

axis systems (two or more).

Here, an extended study on our work presented in [40] is given. Next section

describes zero filtering based ILC. Cross-coupled control implementation is dis-

cussed in the second section. Then, the proposed learning based cross-coupled

controller is explained. Stability and convergence of the controller is examined

in the last section. Effectiveness of the control design is verified with simulations

and experiments on two-axis and three-axis positioning systems using nonlinear

contours. Simulation and experiment results are provided in Chapter 5.

Figure 4.1: Block Diagram of ILC via Zero-Phase Filtering with Feedback Con-
troller [3]
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4.1 Iterative Learning Controller via Zero-

phase Filtering

ILC is a technique for improving the transient response of a system that operates

repetitively. ILC can often be used to achieve perfect tracking, even when the

model is uncertain or unknown and there is no information about the system

structure and nonlinearity [23]. ILC based on zero phase filtering is a practical

and efficient implementation of ILC [3].
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Figure 4.2: Reorganized Block Diagram of ILC via Zero-Phase Filtering with
Feedback Controller

Block diagram of zero-phase filter based iterative learning controller is given

as Figure 4.1 in [3]. In Figure 4.2, a reorganized version of this control scheme

is provided to see it in a traditional block diagram form. In both diagrams,

superscript i is iteration number whereas uiff , u
i
fb and yi are feed forward control

signal, feedback control signal and system output at ith iteration. Moreover, yd

is the desired system output which does not change between iterations. h′m∗ is

algebraic averager and γ is learning gain. The feed forward control signal for

ith iteration is calculated using the feed forward and feedback control signals of

the previous iteration that are shown as ui−1ff and ui−1fb respectively. The learning

update law can be given as in (4.1)[3].
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uiff (k) = ui−1ff (k) +
γ

2M + 1

M∑
j=−M

ui−1fb (k + j) (4.1)

where k is the time index, γ is the learning gain and M is the length index

of zero phase filter. Detailed guidelines for the design of parameters γ and M

can be found in [3]. For our system, M is used as 11 and γ is taken as 0.2.

Although choosing suitable M and γ values is crucial for convergence, a suitable

set of M and γ values can be used for many processes. For example, the same

M and γ values are used in all our single-axis, two-axis, three-axis simulations

and experiments. In the Simulink implementation, first the block diagram is

executed, then a learning m.file is executed for each iteration. The learning m.file

is the implementation of (4.1). Simulink block diagrams and real-time Labview

VI’s and front panels of single-axis ILC implementation are given in Appendix A

and B, respectively.

4.2 Cross-coupled Control with Contouring Er-

ror Vector Approach
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Figure 4.3: Block Diagram of Cross-coupled Control with Contouring Error Vec-
tor Approach

Cross-coupled controller is designed in order to consider the effects between

axes. Contouring error vector approach is used to calculate the coupling gains
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of the cross-coupled controller. Block diagram of the cross-coupled controller is

given in Figure 4.3.In the block diagram, Cx and Cy are coupling gains whereas

ε, ex, ey are the contour error, x-axis tracking error and y-axis tracking error

respectively.
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Figure 4.4: 2D contour with its tangents and normals

In contouring error vector approach, contouring error −→ε is defined as the

vector from the actual position to the nearest point on the line that passes through

the reference position tangentially with direction
−→
t [1]. Cross coupling gains at

a point are calculated as the elements of unit normal vector of the contour at

that point. Therefore, cross-coupling gains are

Ci = ni (i = x, y, z, ) (4.2)

where (Cx, Cy, Cz) are coupling gains and (−→n = [nx ny nz]
T ) is the unit normal

vector. For the control implementation, coupling gains are found through the

developed coupling gain m.file. To find the coupling gains, normals of the contour

at each reference point is found. In Figure 4.4, a two dimensional contour is shown

with its tangents and normals at some reference points. Components of the unit

normal vector at a reference point gives the coupling gains.
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Figure 4.5: Learning Based Cross-coupled Controller for Two-axis Systems

4.3 Learning Based Cross-coupled Controller

The control system is intended to be modular considering being able to inter-

change the stages without changing the control system. For modularity concerns,

ILC is chosen for improving tracking performance since controller structure does

not change with changes in plant model structure and parameters. Moreover,

use of ILC is beneficial for modular systems to compensate for changes after the

assembly. For example, when a modular stage is assembled on top of another,

weight of the sliding mass changes. Since there are only two design parameters in

single-axis control scheme of ILC via zero-phase filtering, the implementation is

practical. Moreover, contouring error vector method is chosen to use with CCC

since it is computationally more efficient. As mentioned before, encoders of the

positioning system have been interpolated to achieve nanometer resolution. This

procedure is accomplished without any extra hardware. Due to this fact, there is

a trade of between resolution of the encoders and the computational effort in the

control loop. Therefore, it is aimed to minimize computational effort in the con-

trol loop to maximize encoder resolution. Using contouring error vector technique

also makes the control method more suitable to implement on multi-axis systems

and to operate with arbitrary nonlinear contours. To sum up, a control method

featuring CCC and ILC via zero phase filtering has been developed incorporating

the contouring error vector estimation technique (Figure 4.5).
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Figure 4.6: Learning Based Cross-coupled Controller for Multi-axis Systems

4.4 Stability and Convergence

Analizing the stability of a control design is important to ensure that the con-

troller can stabilize (or won’t destabilize) a given system. Design of the proposed

control system can be considered through three steps which are designing feed-

back controllers for each axis, a cross-coupled controller and iterative learning

controllers for each axis while considering the cross-coupled control signals. A

generalized block diagram of the presented control for multi-axis systems is given

in Figure 4.6. Symbols and their explanations are given in TABLE 4.1
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Figure 4.7: Block Diagram of Uncoupled System

Firstly, a stabilizing controller can be designed for each single-axis slider.

Then, the designed cross-coupled controller should be stable. For cross-coupled

systems, stability can be analyzed through a term called contour error transfer

function (CETF). Concept of CETF is introduced by Yeh and Hsu in [41] as
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Table 4.1: Parameters
Symbol Description

rd = [rdx, rdy, rdz, ...]
T desired input trajectory

r = [rx, ry, rz, ...]
T output trajectory

e = [ex, ey, ez, ...]
T axial tracking error

e = [eux, euy, euz, ...]
T uncoupled axial tracking error

ui = [uix, u
i
y, u

i
x, ...]

T axial driving signal at ith iteration

ui
fb = [uifbx, u

i
fby, u

i
fbz, ...]

T combined control signal

ui
ff = [uiffx, u

i
ffy, u

i
ffz, ...]

T feedforward control signal at ith iteration

C = [Cx, Cy, Cz, ...]
T coupling gains

Cfb = diag{Cfbx, Cfby, Cfbz, ...} feedback controller

P = diag{Px, Py, Pz, ...} axial controlled plant

Ccc cross-coupled controller

γ learning gain

h′m∗ algebraic averager for ILC

ε contour error

εu uncoupled contour error

the relationship between a coupled (Figure 4.8) and uncoupled (Figure 4.7) sys-

tem. Coupled system refers to a system controlled by cross-coupled controller

and uncoupled system refers to the same system only without the cross-coupled

controller. To derive the CETF, contour error should be derived for systems

without and with CCC as εu and ε, respectively. Contour error for uncoupled

system can be derived as follows

eu = rd − r

= rd − P .Cfb.eu

= (I + P .Cfb)
−1.rd

(4.3)

εu = CT .eu

= CT .(I + P .Cfb)
−1.rd

(4.4)
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Figure 4.8: Block Diagram of Coupled System

For the coupled system, contour error is calculated as follows:

e = rd − r

= rd − P .(Cfb.e + C.Ccc.C
T .e)

= (I + P .Cfb + C.Ccc.C
T )−1.rd

(4.5)

ε = CT .e

= CT .(I + P .Cfb + C.Ccc.C
T )−1.rd

(4.6)

CETF, the relation between uncoupled and coupled system is as given below

as H

ε = H.εu (4.7)

Combining (4.4), (4.6) and (4.7), then using matrix inversion lemma, CETF

is found as
H = 1−CT .(I + P .Cfb)

−1

.[P−1 + C.Ccc.C
T (I + P .Cfb)

−1]
−1 (4.8)

After some simplifications, CETF becomes

H =
1

1 + CT .(I + P .Cfb)
−1.P .Ccc.C

=
1

1 + PeCcc

(4.9)

where Pe = CT (I + P .Cfb)
−1.P .C and can be considered as an equivalent

controlled plant. In Pe, C is the cross coupling gains vector and the gain values
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are changing between -1 and 1 throughout the motion. Therefore, the equivalent

controlled plant has varying parameters. Although these gains vary during the

motion, they are not iteration varying because they are related to the reference

contour. Considering CETF, H, as the sensitivity function, the cross-coupled

controller can be designed using conventional single-input-single-output control

methods. Therefore, a stabilizing controller Ccc can be designed for this system

using traditional feedback stability and robustness techniques after each single-

axis loop is designed to be stable. Moreover, according to the theorem given in

[41], cross-coupled system is internally stable if single-axis feedback controllers

achieve internal stability for each axis and the cross-coupled controller keeps the

equivalent control system(Ccc, Pe) internally stable while the coupling gains vary.

Block diagram of the equivalent control system is given in Figure 4.9
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Figure 4.9: Block Diagram of Equivalent Control System

Convergence of the ILC via zero phase filtering on a cross-coupled system can

be shown extending the convergence analysis for the single-axis system given in

[3]. For the convergence of analysis, some assumptions should be made. Firstly,

single-axis plants should be stabilizible and internally stable as well as the cross-

coupled control system itself. Furthermore, the number of inputs should be equal

to the number outputs in the system. There should be unique desired input ud

for a desired trajectory rd. Considering control signals as an indication of plant

dynamics, system dynamics, ui can be separated into its repeated and unrepeated

components as udR and uiNR, respectively where the unrepeated part is bounded

by h′m ∗ uiNR ≤ ε∗ for ∀i.

ui = udR + uiNR (4.10)
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According to the theorem given in[3], uiff approaches udR as i increases when

ε∗ → 0 if the assumptions are satisfied and a task is performed repeatedly. In

real aplications, ε∗ is very small and can be assumed as ε∗ ≈ 0. Therefore, while

ε∗ tends to zero

lim
i→∞

uiff = udR (4.11)

For the proposed control system, ILC via zero phase filtering is applied to

the all single-axis loops. Since all axis trackings are convergent, the contour

error is also convergent. Convergence of the RMS (root mean square) contour

error is shown in Figure 4.10 for both simulation and experiment. Convergence

analysis for simulations and experiments are performed for the trajectories given

simulation and experiments chapter. As can be observed from (a) of Figure

4.10, RMS contour error for simulations converges to a value which is very close

to zero. For the experiments, convergence is not as smooth as the simulations

due to unrepeated disturbances and nonlinearities that are not modeled. RMS

contour error converges to a value around 30nm. Convergence to 30nm RMS

contour error value can be considered as a good result since encoder resolution

used for the experiments is 25nm.
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Figure 4.10: RMS Contour Error for (a) Simulation and (b) Experiment
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Chapter 5

Simulation and Experiment

In order to verify the performance of the positioning system, simulation analysis

and experiments are conducted for single-axis, two-axis and three-axis positioning

systems. For both simulations and experiments, velocity profiling has been used

to generate individual-axis reference trajectories. Generic s-curve method is em-

ployed for this purpose. In this chapter, trajectory planning used for this thesis

is explained. Then, simulation and experimental results of single-axis, two-axis

and three-axis system are given respectively.

5.1 Trajectory Planning

With the increased demand from the industry, positioning systems are required

to have both high precision and high speed operation capabilities in recent years.

However, uncontrolled accelerating or decelerating motion causes residual vibra-

tions during high-speed operation. Hence, the accuracy of the system decreases

whereas the settling time increases. However, residual vibrations can be prevented

by planning the reference trajectory of the system in a way that acceleration and

deceleration phases are smoothed out [42, 43, 44]. This kind of trajectory plan-

ning is mostly done by various optimization methods based on the time derivative

of the acceleration (i.e., jerk).
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Figure 5.1: A Pulse Shaped Jerk Profile and Its First, Second and Third Integrals
as Acceleration, Velocity and Position Profiles

In this section, motion of the stage is planned so that the stage moves

smoothly, increasing the accuracy and speed of the motion. Figure 5.1 shows

jerk, acceleration, velocity, and position profiles of a typical point to point tra-

jectory, called as s-curve profile. The motion is composed of three regions. These

are acceleration region (I to III), constant velocity region (IV), and decelerating

region (V to VII). At region II, the maximum acceleration and at region VI, the

minimum acceleration is reached and the acceleration is kept constant at these

phases of the motion. However, for our system, since the track of the motion is

limited by 120mm, it is impossible for the slider to reach the maximum possi-

ble acceleration and velocity during its motion between any two points. Hence,

regions II, IV, and VI in Figure 5.1 are not present so that the motion is ac-

complished in maximum and minimum jerk regions only. In the single-axis slider

system, magnitudes of maximum and minimum jerk are the same and they can

be chosen between 0 to 5000mm/s3. Moreover, durations for maximum and min-

imum jerk regions (I, III, V, and VII) are calculated automatically depending on

the specified jerk magnitude and the desired position value.

The same trajectories are used in both experiments and simulations for each
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positioning system configurations. However, different trajectories should be gen-

erated for each different contour with different dimensions. Constructed trajec-

tories for single-axis slider, two-axis and three-axis system are given in Appendix

C.

5.2 Single-axis Slider System

For the single-axis slider system, performance of the system with only feedback

control and feedback control with iterative learning control is compared. A generic

s-curve trajectory is given to the single-axis system.

5.2.1 Simulation Results

Position results and position error results are given in Figure 5.2 and Figure 5.3,

respectively. For the single-axis system simulations, very good tracking perfor-

mance can be achieved for feedback control with RMS tracking error of 0.76nm.

When iterative learning control is used for 20 executions, system performans

becomes even better with 0.05nm RMS tracking error. From these simulation

results, it can be said that iterative learning control implementation is effective.
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Figure 5.2: Single-axis System Simulation - Position Tracking
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5.2.2 Experimental Results
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Figure 5.4: Single-axis System Experiment - Position Tracking

Performance of the system with only feedback control and feedback control

with iterative learning control is compared by conducting experiments on the

single-axis slider system. In this section, results of the experiment conducted on

vertical positioning system are provided. Position with respect to time plot is

given in Figure 5.4. From the figure, tracking performance improvement of itera-

tive learning control can be observed. In Figure 5.5, tracking error of the single-

axis system is given. After 20 iterations, tracking error reduces significantly.

In addition to the general reduction, maximum tracking error is decreased from

350nm to 100nm. Moreover, RMS tracking error of 115.29nm can be achieved
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by feedback control. When iterative learning control is used for 20 executions,

system performans enhanced and the RMS tracking error becomes 29.3nm.
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Figure 5.5: Single-axis System Experiment- Position Error

5.3 Two-axis Slider System

In order to verify the performance of the learning based cross-coupled control

algorithm, simulations and experiments are conducted on the two-axis positioning

system. In the simulations and experiments, performance of the learning based

cross-coupled controller is compared with feedback control, feedback control with

iterative learning control, feedback control with cross-coupled control. Learning

based controller is mentioned as feedback control with cross-coupled control and

iterative learning control (FB CCC ILC).

5.3.1 Simulation Results

Two-axis positioning system has been simulated with a nonlinear contour. In

the proposed approach, it is straightforward to find coupling gains when the

equation of the curve is known since coupling gains are just elements normal

vector elements of the contour. This is accomplished through the coupling gain

MATLAB script mentioned in related section. Plant model is simulated with
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feedback control (FB), feedback control with cross-coupled control (FB CCC),

feedback control with iterative learning control (FB ILC) and feedback control

with cross-coupled control and iterative learning control (FB CCC ILC). Effects

of all simulated control schemes on the performance are summarized in TABLE

5.1 and Figure5.6. In the table and figure, root mean square (RMS) of the error

signals has been used. It can be observed that combining ILC and CCC with FB

gives the best results as expected. This combination benefits from both tracking

performance improvements of ILC and contouring performance improvements of

CCC. For the designed control system, ILC convergence has been achieved around

20 iterations. In other words, there is no significant decrease in the errors after

20 iterations. Hence, FB ILC and FB CCC ILC simulation results are recorded

after 20 iterations.

Table 5.1: Two-axis System simulation - RMS error values for the nonlinear
contour

RMS Error in x-axis[nm] y-axis[nm] contour[nm]

FB 11.30 111.27 39.04

FB CCC 15.42 110.65 32.36

FB ILC 3.47 2.17 2.73

FB CCC ILC 1.09 2.11 0.78
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Figure 5.6: Two-axis System Simulation - RMS Error Values for The Nonlinear
Contour

The nonlinear contour used in simulations is given in Figure 5.7. In the figure,

the zoomed view is taken from the part with a sharp turn that is shown with the

box on the original contour because contour tracking is more difficult on sharp
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Figure 5.7: Two-axis System Simulation for The Nonlinear Contour

turns. As can be seen in zoomed view of Figure 5.7, contouring performance of

the system for the nonlinear contour is improved significantly when the proposed

method (FB CCC ILC) is used instead of only feedback (FB) control.

5.3.2 Experimental Results

Velocity profiling with s-curve is used to obtain individual axis trajectories in the

experimental results section. For experimental results, the same contour with

same velocity profiling designed for simulations part is used. Contour tracking

of the two-axis system with only feedback (FB) control and feedback control

with CCC and ILC (FB CCC ILC) is given in Figure 5.8. Looking at the zoomed

view, it is obvious that presented control design improved contouring performance

considerably. When (a) and (b) of Figure 5.8 is compared, it should be noted that

simulations and experiments give similar behavior such as deteriorated contour

control just after the sharp turn. Moreover, FB CCC ILC system gives better

contouring result than FB. Yet, in experimental results, FB CCC ILC design does

not improve the contouring performance as much as simulation. This result is

reasonable considering unmodeled system dynamics or disturbances.
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Figure 5.8: Experimental Results of Two-axis System for The Nonlinear Contour

Experiments are conducted on the system with feedback control (FB), feed-

back control with cross-coupled control (FB CCC), feedback control with iterative

learning control (FB ILC) and feedback control with cross-coupled control and

iterative learning control (FB CCC ILC). FB ILC and FB CCC ILC experimental

results are recorded after 20 iterations. Variation of RMS single-axis errors and

RMS contour error with the different control schemes is given in Figure5.9 and

TABLE 5.2. Looking at TABLE 5.2, it can be observed that FB CCC system

decreases contour error significantly whereas changes in axial errors are not as

significant. Similarly, FB ILC system decreases axial tracking errors more effec-

tively than contour error as expected. Best tracking and contouring performance

is obtained for FB CCC ILC system as for the simulation case. All axial tracking

errors and contour error are improved around 50%. This improvement is higher

for simulations however this is acceptable since simulations are performed for

idealized systems in idealized conditions.
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Table 5.2: Two-axis System experiments - RMS error values for the nonlinear
contour

RMS Error in x-axis[nm] y-axis[nm] contour[nm]

FB 46.84 113.05 57.08

FB CCC 42.06 94.66 43.49

FB ILC 25.81 79.14 39.33

FB CCC ILC 21.28 66.69 27.52
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Figure 5.9: Two-axis System Experiment - RMS Error Values for The Nonlinear
Contour

5.4 Three-axis Slider System

Performance of the learning based cross-coupled controller is also tested on three-

axis system. In this work, it is also claimed that the proposed method can be

implemented on a three-axis system. In order to demonstrate it, simulations and

experiments of proposed method for three-axis system are supplied. In the simula-

tions and experiments, performance of the learning based cross-coupled controller

is compared with feedback control, feedback control with iterative learning con-

trol, feedback control with cross-coupled control. Learning based controller is

mentioned as feedback control with cross-coupled control and iterative learning

control (FB CCC ILC). Reference contour is a 45 degrees inclined circle with

7 micrometers radius as given in Figure 5.10 . As mentioned previously, cou-

pling gains can be obtained from the normal vector of the contour. Using that

approach coupling gains have been found without too much computational effort.
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5.4.1 Simulation Results

In the zoomed view of Figure 5.10, it has been observed that the proposed method

has very good tracking performance compared with the feedback control. More-

over, reference contour and the resulting contour of the FB CCC ILC control is

almost coincident. This also confirms the very small RMS tracking errors and

RMS contour error observed in TABLE 5.3.

Simulation results of three-axis system given in TABLE 5.3 and Figure 5.11.

Looking at the results, it is observed that contour error decreases with FB CCC

whereas individual axis errors may deteriorate. Yet, when the ILC is also added

to the control scheme both individual and contour errors decrease significantly.

For these simulations, combined CCC and ILC gives the best contour and track-

ing accuracy. Moreover, it can also be observed that FB ILC control decreases

individual axis tracking errors by 63%, 85%, 63%, contour error 46%. When CCC

is added to FB ILC controls contour error decreases 72% and individual tracking

errors decrease by 36%, 43% and 63%. This observation confirms ILC is espe-

cially efficient in tracking control whereas CCC is especially effective for contour

control. Moreover, combining both controllers results in a controller, which is

effective for both tracking and contouring.

Figure 5.10: Three-axis System Simulation for The Nonlinear Contour
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Table 5.3: Three-axis system simulation - RMS error values for the nonlinear
contour

RMS Error in x-axis[nm] y-axis[nm] z-axis[nm] contour[nm]

FB 235.87 144.26 235.87 86.07

FB CCC 268.06 177.19 209.68 59.12

FB ILC 33.07 51.44 33.07 46.29

FB CCC ILC 21.22 29.78 12.29 13.55
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Figure 5.11: Three-axis System Simulation - RMS Error Values for The Nonlinear
Contour

5.4.2 Experimental Results

Three-axis system experiments are conducted on the system with feedback con-

trol (FB), feedback control with cross-coupled control (FB CCC), feedback control

with iterative learning control (FB ILC) and feedback control with cross-coupled

control and iterative learning control (FB CCC ILC) which is the learning based

cross-coupled controller. FB ILC and FB CCC ILC experimental results are

recorded after 20 iterations since after 20 iterations improvements are not obvi-

ous as before. Variation of RMS single-axis errors and RMS contour error with

the different control schemes is given in Figure 5.12 and TABLE 5.4. Looking

at TABLE 5.4, it can be observed that FB CCC system decreases contour error

significantly whereas axial error for z-axis increases a little bit. This is acceptable

since cross-couples control promises to improve contour error while axial track-

ing may deteriorate. Also, contouring performance is the important criteria for

multi-axis systems rather than axial-tracking errors. Similarly, FB ILC system
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decreases axial tracking errors more effectively than contour error as expected.

Best tracking and contouring performance is obtained for FB CCC ILC system

as for the simulation case. Moreover, having maximum RMS error as 76.86nm

is fairly good for a system with 25nm encoder resolution. Although simulations

show better improvement on tracking and contouring, this is expected since sim-

ulations are performed for idealized conditions.

Table 5.4: Three-axis system experiment - RMS error values for the nonlinear
contour

RMS Error in x-axis[nm] y-axis[nm] z-axis[nm] contour[nm]

FB 135.16 99.97 213.43 137.95

FB CCC 70.71 86.56 229.72 74.04

FB ILC 72.56 81.60 34.90 57.45

FB CCC ILC 53.55 76.86 34.41 43.61
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Figure 5.12: Three-axis System Experiments - RMS Error Values for The Non-
linear Contour

In Figure 5.13, contour tracking of the system is given for x-y plane projec-

tion, y-z plane projection, x-z plane projection and x-y-z three dimensional view.

Looking at these figures, benefits of the proposed controller for contour tracking

is obvious.
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Figure 5.13: (a) x-y Plane, (b) y-z Plane, (c) x-z Plane and (d) 3 Dimensional
Experimental Results of Three-axis System for The Nonlinear Contour
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Chapter 6

Robustness

It is important for a system to stay stable under reasonable variations in system

parameters and disturbances. In addition to staying stable, performance of the

system should be in an acceptable margin in the existence of uncertainties and

disturbances. In this chapter, robustness of the control design is tested through

some experiments. First, predicted uncertainties and disturbances of the system

are described. Then, the test setup that is used to simulate these uncertain-

ties and disturbances for the experiments is explained. Finally, test results are

provided with the conclusions withdrawn.

6.1 Predicted Uncertainties and Disturbances

of the System

In order to test the robustness of the system, first, test parameters should be

determined. For the determination of test parameters, there are two important

concerns as the controlled system and the application that it is used for. The

system should be examined carefully to indicate the uncertainties and nonlinear-

ities. Moreover, the application is very important in terms of the disturbances.

Variations of the system parameters may also depend on the application.
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For our slider system, mathematical model is derived with idealizations in

permanent magnet linear motor and bearings. In permanent magnet linear mo-

tors, there are force ripples that depend on position. These ripples are generally

small in magnitude and position dependent [45]. Since the force ripples are small

fluctuations on the motor force, an axial force in the direction of movement of the

slider can represent this uncertainty (Figure 2.6). For idealization of cross-roller

bearings, friction force is modeled as only viscous friction. However, there are

other friction models that should be considered as coulomb and stribek friction.

Since there are unmodeled and nonlinear effects in friction, these should be rep-

resented in the test. Similarly, friction forces can be symbolized by a force in the

movement axis.

Application that the positioning system is used for is very important when

disturbances applied on it are considered. For example, a part will be assembled

on the system for any application in order to be positioned. This part could

be a laser head with small mass or it could be a larger part to be machined.

Therefore, the control design should withstand the mass of assembled parts up to

a certain value. During the tests, this can easily be represented by adding mass

on the two-axis positioning system. Yet, three-axis positioning system includes a

vertical axes and counter balance. Additional mass assemblies are compansated

by the adjustable air counter balance system in our system. Depending on the

application, axial disturbances can also change. For example, surface scanning

creates only small disturbances at the point of touch. Yet, average cutting force

is about 2−3N for micro-machining applications [46]. These disturbances can be

represented as axial forces in the robustness tests. Moreover, there can be sudden

changes in the cutting force due to impurities in the in the material. Applying

sudden axial forces could be a representation of this disturbance in the robustness

tests.

53



6.2 Test Setup

In the previous section, predicted uncertainties and disturbances are explained.

Some ways to represent these uncertainties and disturbances in the experiments

are also discussed. All uncertainties and disturbances of the system can be sym-

bolized by three methods as assembling additional sliding mass, applying constant

axial force and applying sudden axial force. In order to perform these tests, the

test setup given in Figure 6.1 is used. In this setup, pulley systems are used to

obtain axial forces by hanging parts with specific mass. Additional mass tests are

performed by assembling the parts with specific mass on the positioning system.

For three-axis positioning system, there is also a vertical axis in addition to the

horizontal axes. For a vertical axes axial forces can be represented by assem-

bling mass on the slider but without adjusting the counter balance system for the

current sliding mass. Axial forces are applied through assembling mass on the

vertical axis and using the pulley system for horizontal axes.

Figure 6.1: Robustness Test Setup
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6.3 Test Results

As explained, three different types of experiments should be carried out. These

three test types are sliding mass increase test, constant axial force test and sudden

axial force test. Next three subsections will discuss result of these test. Experi-

mental results of the system without artificial uncertainties and disturbances are

given in Section 5.3.2 for 25nm encoder resolution. Also, the same contour and

trajectories are used for robustness tests. As mentioned before, sensitivity of the

system to electrical noises increases for lower encoder resolution values. In order

to distinguish effects of the physical noises from electrical noises, 33nm encoder

resolution is used since system is less sensitive to electrical noises at this resolution

level. Moreover, experiments are conducted at the end of the sliders since limits

of the linear motor show least effecient performance. Therefore, experiments are

performed for worst phsycal conditions.

6.3.1 Sliding Mass Increase Test

Table 6.1: Sliding Mass Inrease Test Results for 1st Run

Additional Mass 250g 500g 1000g

RMS x-axis error [nm] 45 43 119

RMS y-axis error [nm] 140 200 81

RMS contour error [nm] 63 110 78

Table 6.2: Sliding Mass Inrease Test Results for 20th Run

Additional Mass 250g 500g 1000g

RMS x-axis error [nm] 31 33 41

RMS y-axis error [nm] 100 92 101

RMS contour error [nm] 51 51 60

For sliding mass increase tests, 250g, 500g and 1000g masses are assembled

on the positioning system. As mentioned in the previous section, sliding mass in-

crease can be compansated through counter balance system for the vertical axis.
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Therefore, sliding mass increase tests are performed for only two-axis positioning

system. Test results for the 1st run are summarized in Table 6.1. As expected,

system performance is deteriorated when extra mass is assembled compared to

the results given in Section 5.3.2. Since the disturbances in these test are repeat-

able, learning based cross-coupled controller helps system to compansate for the

increase in mass. After 20 iterations, system shows similar performances for all

extra mass values and error values are decreased as can be observed from Table

6.2. Results of the 20th run are fairly good considering encoder resolution is 33nm.

When these results are compared with the ones without any artificial uncertainty

and disturbance, it can be concluded that system performance is acceptable for

sliding mass increase up to 1000g.

6.3.2 Constant Axial Forces Test

Table 6.3: Constant Axial Force Test in x-axis for 1st Run (two-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 78 150 170

RMS y-axis error [nm] 340 340 330

RMS contour error [nm] 200 210 230

Table 6.4: Constant Axial Force Test in x-axis for 20th Run (two-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 32 57 39

RMS y-axis error [nm] 120 88 85

RMS contour error [nm] 68 59 55

Table 6.5: Constant Axial Force Test in y-axis for 1st Run (two-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 85 65 76

RMS y-axis error [nm] 750 1000 1200

RMS contour error [nm] 300 370 450
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Table 6.6: Constant Axial Force Test in y-axis for 20th Run (two-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 28 43 27

RMS y-axis error [nm] 190 170 200

RMS contour error [nm] 64 82 64

Table 6.7: Constant Axial Force Test in both x and y axes for 1st Run (two-axis
system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 110 140 160

RMS y-axis error [nm] 850 1000 1300

RMS contour error [nm] 320 390 490

For the experiments of this subsection, constant axial forces with magnitude

of 1N , 2.5N and 5N are applied on the system using the test setup given in

Figure 6.1. Robustness of the control system to constant axial forces is tested

through three sets of experiments as constant axial force in only x-axis, only

y-axis and both x-axis and y-axis on the two-axis system. Moreover, for three-

axis sytem, constant axial force tests are conducted in only z-axis and all axes

(x-y-z) together.Test results of constant axial force in only x-axis, only y-axis

and both x-axis and y-axis are summarized in Table 6.3, Table 6.5 and Table

6.7, respectively for 1strun. After 20 iterations, system gives improved contour

error values for all constant axial force tests as can be observed from Table 6.4,

Table 6.6 and Table 6.8. Three axis system test results are summerized in Table

6.9 and Table 6.11 for 1strun of only z-axis and x-y-z axes tests, respectively.

The 20thrun results of these tests are given in Table 6.10 and Table 6.12. It is

observed that learning based cross-coupled controller is efficient to reduce effects

of these repeated disturbances. Overall performance of the control system is in

the acceptable range in the existence of constant axial forces.
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Table 6.8: Constant Axial Force Test in both x and y axes for 20th Run (two-axis
system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 47 30 29

RMS y-axis error [nm] 190 160 190

RMS contour error [nm] 66 66 69

Figure 6.2: System Response with 0.1N Sudden Axial Force for Horizontal Axis

6.3.3 Sudden Axial Force Test

Lastly, this section discusses the robustness of the control system in the existence

of sudden axial forces. For our system, sudden axial force may be caused by a

sudden electrical noise or an impurity in the machined part during a machining

operation etc. These sudden changes assumed to be small in magnitude. In

the experiments, axial forces of 0.02N , 0.05N and 0.1N are applied suddenly.

Effects of these small sudden forces can not be observed through root mean

square of errors. Graphical representations are better to show effects of sudden

disturbances. For forces of 0.02N and 0.05N , effects are very small that they

can not be observed by encoder measurement resolution of 33nm. In Figure

6.2, trajectory response of x-axis is given for sudden axial force of 0.1N with its
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Figure 6.3: System Response with 0.1N Sudden Axial Force for Vertical Axis

Table 6.9: Constant Axial Force Test in z axis for 1st Run (three-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 164 116 176

RMS y-axis error [nm] 134 169 141

RMS z-axis error [nm] 222 223 221

RMS contour error [nm] 89 99 104

zoomed view to represent the response of a horizontal slider. Trajectory response

of z-axis is given in Figure 6.3 to represent vertical slider response. Looking at

the figures, it can be said that system can absorb this disturbance in acceptable

time duration with an acceptable deflection.

6.4 Conclusion

In this section, series of experiments have been conducted to examine robust-

ness of the learning based cross-coupled control system. Since learning based

cross-coupled controller utilizes iterative learning control, repeated disturbances

are compensated through iterations. For a multi-axis system, contour error is

the most important criteria. In the robustness test results, RMS contour error
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Table 6.10: Constant Axial Force Test in z axis for 20th Run (three-axis system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 93 105 193

RMS y-axis error [nm] 116 102 108

RMS z-axis error [nm] 35 45 59

RMS contour error [nm] 52 64 73

Table 6.11: Constant Axial Force Test in all x-y-z axes for 1st Run (three-axis
system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 120 152 164

RMS y-axis error [nm] 249 449 537

RMS z-axis error [nm] 217 226 204

RMS contour error [nm] 80 158 143

is always below 82nm after 20 iterations. For 33nm encoder resolution and the

existing disturbances, maximum of 82nm RMS contour error is fairly good. Al-

though system shows satisfactory results for the sudden disturbances, proposed

controller is not designed for systems with large sudden disturbances since sudden

disturbances generally unrepeated disturbances. If the positioning system is used

for an application involving large sudden disturbances, a robust controller can

be designed. The proposed controller uses PID controller as a feedback control

scheme, replacing it with a robust control scheme could result in better per-

formance in the existence of disturbances. In other words, a robust feedback

controller, feed-forward iterative learning controller and cross-coupled controller

can be used together to obtain an integrated controller with increased robustness.
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Table 6.12: Constant Axial Force Test in all x-y-z axes for 20th Run (three-axis
system)

Magnitude of Force 1N 2.5N 5N

RMS x-axis error [nm] 37 40 37

RMS y-axis error [nm] 68 93 90

RMS z-axis error [nm] 33 35 34

RMS contour error [nm] 46 46 38
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Chapter 7

Conclusion and Future Work

In this thesis, a MIMO controller featuring cross-coupled control and iterative

learning control schemes is presented to improve contour and tracking accuracy

at the same time. Instead of using the standard contour estimation technique

proposed with the variable gain cross-coupled control, presented control design

incorporates a computationally efficient contour estimation technique. In ad-

dition to that, implemented contour estimation technique makes the presented

control scheme more suitable for arbitrary nonlinear contours and multi-axis sys-

tems. The presented control system is intended to be modular considering that

the stages can be interchanged without changing the control system. For mod-

ularity concerns, ILC is chosen to improve tracking performance since controller

structure does not change with plant model structure and parameters changes.

Also, using the zero-phase filtering based iterative learning control results in a

practical design and an increased applicability to modular systems. It is observed

that the same control parameters for ILC via zero-phase filtering resulted in suf-

ficient convergence for all configurations of the single-axis system (x, y and z).

Furthermore, use of ILC is beneficial for modular systems to compensate the

changes after the assembly due to its learning nature.

Stability and convergence analysis of the learning based cross-coupled con-

troller is also provided. Tracking and contouring performance of the method
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on a nonlinear contour is verified through simulations and experiments achiev-

ing nanometer level accuracy for the two-axis and three-axis positioning systems.

Simulation and experimental testing of the different controllers demonstrated con-

touring performance benefits from the combined feedback (FB), iterative learning

(ILC) and cross-coupled control (CCC) system. Four different control methods

as FB, FB I LC, FB CCC, FB CCC ILC were tested. The best control system

was found to be the combination of FB, ILC and CCC, which resulted in both

the best individual axis and contour tracking performances.

Tracking and contouring performance of the method on a nonlinear contour is

verified through simulations and experiments achieving nanometer level accuracy

for the two-axis system. In the experiments, RMS error of x-axis, RMS error

of y-axis and RMS contour error of the two-axis system is decreased to 21nm,

66nm and 27nm, respectively. Considering encoder resolution, the smallest value

encoder can detect, is 25nm, resultant positioning is very accurate. Having RMS

error less than the resolution means that trajectory is followed very closely and

error value has been zero in some parts of the motion as for case of RMS error

of x-axis. For three-axis positioning system experiments, RMS error of x-axis,

RMS error of y-axis, RMS error of z-axis and RMS contour error is decreased to

54nm, 77nm, 34nm and 44nm, respectively. This result is also very good for a

three-axis positioning system operating with 25nm encoder resolution.

Robustness of the control algorithm implementation is tested through some

experiments that are designed considering the expected disturbances and system

uncertainties. These disturbances and uncertainties are modeled regarding some

specific applications. In future, the controller performance will be examined using

the positioning system for these specific applications such as micro-machining.

Since learning based cross-coupled controller utilizes iterative learning control,

repeated disturbances are compensated through iterations. In the robustness

test results, RMS contour error is always below 82nm after 20 iterations. For

33nm encoder resolution and the existing disturbances, maximum of 82nm RMS

contour error is fairly good. Although system shows satisfactory results for the

sudden disturbances, proposed controller is not designed for systems with large
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sudden disturbances. If the positioning system is used for an application involving

large sudden disturbances, a robust controller can be designed. The proposed

controller uses PID controller as a feedback control scheme, replacing it with a

robust control scheme could result in more robust performance. In other words,

a robust feedback controller, feed-forward iterative learning controller and cross-

coupled controller can be used together to obtain an integrated controller with

increased robustness.
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Appendix A

Simulink Diagrams

Figure A.1: Simulink Block Diagram for ILC
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Figure A.2: Simulink Block Diagram for Learning Based Cross Coupled Control
in Two-axis
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Figure A.3: Simulink Block Diagram for Learning Based Cross Coupled Control
in Three-axis
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Appendix B

Labview Implementations

Figure B.1: Front Panel for Single-axis ILC Control
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Figure B.2: Labview VI for Single-axis ILC Control
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Figure B.3: Front Panel for Two-axis Learning Based Cross-coupled Control
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Figure B.4: Labview VI for Two-axis Learning Based Cross-coupled Control
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Figure B.5: Front Panel for Three-axis Learning Based Cross-coupled Control
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Figure B.6: Labview VI for Three-axis Learning Based Cross-coupled Control
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Appendix C

Trajectories
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Figure C.1: Trajectory for single-axis simulations and experiments
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Figure C.2: (a) x-axis trajectory, (b) y-axis trajectory and (c) contour for the
two-axis simulation and experiments
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Figure C.3: (a) x-axis trajectory, (b) y-axis trajectory, (c) z-axis trajectory and
(d) contour for the three-axis simulation and experiments
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